2015 Tom 180

УСЛОВИЯ ОБИТАНИЯ ПРОМЫСЛОВЫХ ОБЪЕКТОВ

УДК 574.583(265.53)

А.Ф. Волков*

Тихоокеанский научно-исследовательский рыбохозяйственный центр, 690091, г. Владивосток, пер. Шевченко, 4

ПРОСТРАНСТВЕННО-ВРЕМЕННЫЕ ЭЛЕМЕНТЫ ЭКОЛОГИИ ЭВФАУЗИИД ОХОТСКОГО МОРЯ

Для выявления наиболее общих закономерностей горизонтального распределения массовых видов эвфаузиид Охотского моря, их ранних стадий развития и размерных классов был применен метод картирования, при котором за станции принимались центральные точки стандартных биостатистических районов, При таком подходе с карт исчезают мелкие элементы — нестационарные локальные пятна повышенных или пониженных концентраций. Карты и графики распределения биомассы 4 видов эвфаузиид и численности их ранних стадий развития, привязанных постанционно к глубинам, подтверждают представления о том, что Thysanoessa raschii и Th. inermis — надшельфовые виды, а Th. longipes и Euphausia pacifica — океанические. При этом два самых массовых вида — Th. raschii и Th. longipes по отношению к глубинам имеют альтернативное распределение. Два других вида — Th. inermis и Е. pacifica в Охотское море проникают через Курильские проливы, поэтому их заметные концентрации обычно приурочены к южной части моря. В таблицах приведены данные по биомассе и численности ранних стадий и размерных классов эвфаузиид, по которым прослеживается изменение их количества в верхней (0-50 м) и нижней (50-200 м) эпипелагиали при переходе от светлого времени суток к темному. Подавляющая часть особей всех размерных классов держалась в нижней эпипелагиали. В ночное время биомасса всех размерных классов многократно возрастает, при этом примерно половина всех особей поднимается в верхние слои. Количество яиц, науплиев и калиптописов в дневное и ночное время было вполне сопоставимым, поскольку большая их часть круглые сутки держится в верхней эпипелагиали, количество же фурцилий в ночное время возрастает: по биомассе в 8 раз, по численности — в 4. Большая часть из фурцилий, обитающих в дневное время в эпипелагиали, также держится в верхних слоях. В ночное же время резко возрастает их количество в слое 50-200 м, повидимому, за счет поднявшихся из более глубоких слоев: фурцилии, обитающие днем в слое 0-50, представлены первыми стадиями, а мигрирующие ночью из больших глубин — более поздними, имеющими амплитуду суточных миграций, уже сопоставимую с более взрослыми особями. В календарном плане периоды наиболее высокой численности ранних стадий эвфаузиид по мере их развития закономерно сдвинуты во времени, что свидетельствует о сравнительной краткости периодов существования их основной части.

Ключевые слова: Охотское море, биостатистические районы, эвфаузииды, численность, биомасса, ранние стадии: яйца, науплии, калиптописы, фурцилии, размерные классы.

Volkov A.F. Spatial-temporal patterns of euphausiids ecology in the Okhotsk Sea // Izv. TINRO. — 2015. — Vol. 180. — P. 128–139.

The most common regularities in spatial distribution of mass Euphausia species and their size classes and ontogenetic stages are determined for the Okhotsk Sea using the data averaging by

^{*} Волков Анатолий Федорович, доктор биологических наук, ведущий научный сотрудник, e-mail: volkov413@yandex.ru.

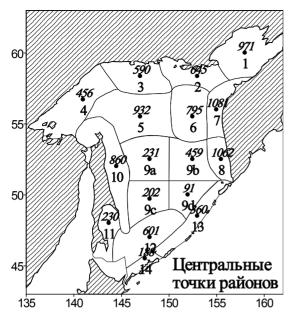
Volkov Anatoly F., D.Sc., leading researcher, e-mail: volkov413@yandex.ru.

biostatistical areas and applying the average results to the centers of the areas that allows to smooth small-scale patterns as patchiness. *Thysanoessa raschii* and *Th. inermis* occupy mostly shelf areas and *Th. longipes* and *Euphausia pacifica* — deep-water areas; among them *Th. raschii* and *Th. longipes* are more abundant and *Th. inermis* and *E. pacifica* are supposedly allochtonous species which penetrate to the Okhotsk Sea through the Kuril Straits, so they are distributed mainly in the southern part of the Sea. Mean biomass and abundance of all species in the upper (0–50 m) and deeper (50–200 m) layers are calculated for each stage and size class in the daytime and nighttime, separately: most of them, including both adults and furcilias, concentrate mainly in the deeper layer and their night biomass is higher in both layers though about a half of animals raise to the sea surface at night. Only eggs, nauplii and calyptopes of euphausiids don't change their abundance considerably between day and night, and most of them occupy the upper layer round the clock. Obviously, the increasing of late furcilias and adults in the deeper layer at night is caused by their diurnal migration from the layers below 200 m. Seasons of the highest abundance for early stages come in natural order that is a sign of their short duration.

Key words: Okhotsk Sea, biostatistical area, euphausiid, plankton abundance, plankton biomass, early ontogenetic stage: egg, nauplius, calyptopis, furcilia, size class.

Введение

Эвфаузииды в Охотском море являются одной из массовых групп планктона, доминирующих в питании многих видов рыб, кальмаров, млекопитающих и птиц. За последние 30 лет в научных экспедициях ТИНРО-центра были собраны материалы, позволившие установить видоспецифические особенности пространственного распределения 4 массовых видов эвфаузиид, проследить их сезонную и многолетнюю динамику, а также значение в питании массовых видов обитателей эпи- и мезопелагиали. Эти результаты приведены в многочисленных публикациях, диссертациях и монографиях (Шунтов и др., 1993; Кузнецова, 2005; Чучукало, 2006; Шунтов, Темных, 2008, 2011; и др.), что дает возможность также вести речь о некоторых элементах экологии данных видов эвфаузиид и рассматривать их в качестве закономерностей с качественными и количественными показателями.


Ниже рассматриваются некоторые стороны, касающиеся вопросов экологии этих видов эвфаузиид: отношение их ранних стадий к зонам по глубине, времени появления и нахождения в эпипелагиали, месяцы с максимальной численностью, слои с максимальной численностью (верхняя и нижняя эпипеалгиаль), приуроченность различных размерных классов к одним и тем же или разным зонам. Эти и некоторые другие элементы экологии рассматриваются в предлагаемой статье.

Материалы и методы

Все исходные данные взяты из базы ТИНРО-центра «Планктон», созданной по материалам экспедиционных исследований в период 1984—2013 гг. Эти материалы собраны и обработаны по единой методике, принятой в ТИНРО-центре в качестве стандартной, поэтому являются сравнимыми (Волков, 2008а). Вкратце эта методика состоит в следующем.

Планктон облавливается сетями БСД (площадь входного отверстия $0,1\,\mathrm{M}^2$, фильтрующий конус из сита с ячеей $0,168\,\mathrm{mm}$) тотальными ловами в слое $0-200\,\mathrm{m}$ или 0—дно (при глубинах менее $200\,\mathrm{m}$). При обработке пробу зоопланктона разделяют на размерные фракции посредством ее просеивания через набор из двух сит: № 7 с ячеей $1,2\,\mathrm{mm}$ и № $14\,\mathrm{c}$ ячеей $0,5\,\mathrm{mm}$. В итоге получаются $3\,\mathrm{фракции}$: мелкая (длина животных от $0,6\,\mathrm{до}$ $1,2\,\mathrm{mm}$), средняя (1,2-3,5) и крупная ($>3,2-3,5\,\mathrm{mm}$). В полученные результаты применительно к эвфаузиидам вводятся поправки на недолов: для икры и науплиев из мелкой фракции — 1,0; для калиптописов — 1,5; для калиптописов и фурцилий из средней фракции — 2,0; для эвфаузиид из крупной фракции длиной до $10\,\mathrm{mm}$ — 2; $10-20\,\mathrm{mm}$ — 5; более $20\,\mathrm{mm}$ — 10.

Данные по численности и биомассе эвфаузиид и их ранних стадий осреднялись по биостатистическим районам и подрайонам, границы которых, обозначения и количество репрезентативных планктонных станций в этих районах приведены на рис. 1, а в табл.

1 — помесячные данные по количеству станций. В зимние месяцы (январь-март) большая часть акватории моря обычно была покрыта плотными льдами, поэтому съемки там если и проводились, то нерегулярно. На картах горизонтального распределения кроме изолиний приведены значения биомасс или численности для каждого района и подрайона.

Рис. 1. Границы, номера биостатистических районов Охотского моря и количество планктонных станций (курсив)

Fig. 1. Boundaries and numbers of biostatistical areas in the Okhotsk Sea; *italics* — number of plankton stations

Таблица 1

Количество репрезентативных планктонных станций за 1984–2013 гг. (пустые клетки — станции не выполнялись из-за ледовитости)

Table 1
Number of representative plankton stations in 1984–2013
(empty cells — no stations because of the ice cover)

	(empty cens) no stations occurs of the lee cover)												
Рай-	Ян-	Фев-	Март	Апрель	Май	Июнь	Июль	AB-	Сен-	Ок-	Но-	Де-	12 ме-
ОН	варь	раль	Mapi	Апрель	ivian	инопь	THOJIB	густ	тябрь	тябрь	ябрь	кабрь	сяцев
1		1	9	261	310	52	69	71	57	49	32	60	971
2		4		95	281	48	34	25	54	27	41	36	645
3				1	326	41	19	27	74	18	67	17	590
4					192	63	24	13	89	23	50	2	456
5				15	455	56	39	54	123	36	133	21	932
6		16	19	253	218	4	43	67	18	70	39	48	795
7		22	53	414	10	29	188	138	12	96	28	91	1081
8		16	98	415	6	66	196	49	9	92	38	77	1062
9a			3	4	5	5	25	23	5	78	75	8	231
9b		8	55	122	1	6	50	25	4	125	57	6	459
9c			7			2	31	51	4	53	50	4	202
9d			4			3	9	18		41	12	4	91
10				1	146	233	71	89	157	48	95	20	860
11						9	64	106	4	27	20		230
12	32		11			10	55	208	23	147	87	28	601
13	21	2	23			6	62	94	20	99	25	8	360
14	9		98			4	9	41	7	11	5	4	188
Всего	62	69	380	1581	1950	637	988	1099	660	1040	854	434	9754

Результаты и их обсуждение

В Охотском море встречаются 5 видов эвфаузиид: *Thysanoessa raschii, Th. longipes, Th. inermis, Th. inspinata* и *Euphausia pacifica*. Из них *Th. inspinata* наиболее малочисленна, в Охотском море попадается довольно нерегулярно и только в самой южной части, поэтому в данной статье не рассматривается. Средняя биомасса и общий запас *Th. raschii* значительно выше, чем у остальных 3 видов: *Th. raschii* — 150,8 мг/м³ и 37,6 млн т; *Th. longipes* — 73,3 мг/м³ и 18,3 млн т; *Th. inermis* — 5,1 мг/м³ и 1,3 млн т; *E. pacifica* — 18,6 мг/м³ и 4,6 млн т (Волков, наст. том), соответственно в питании планктоноядных животных этот вид является доминирующим. Это относится и к осредненным данным для всего моря и для отдельных районов.

Видовые особенности горизонтального распределения. Каждый из 4 рассматриваемых видов эвфаузиид имеет характерное горизонтальное распределение (Журавлев, 1984; Чучукало и др., 1996; Волков, 2002, 2008б, 2013а, б, наст. том; Volkov, 2004; и др.), которое хорошо проявляется при картировании биомассы (рис. 2). Th. raschii встречается по всему Охотскому морю, но явно тяготеет к прибрежным и надшельфовым водам, Th. longipes — по всей акватории, но его наиболее значительные концентрации приурочены к более глубоководным зонам. Два других вида постоянно обитают только в самой южной части Охотского моря, хотя в отдельные годы могут проникать и значительно севернее; при этом Th. inermis, как и Th. raschii, обитает преимущественно в шельфово-сваловой зоне и в Охотском море большей частью встречается на юге камчатского и сахалинского шельфов, а E. pacifica — в более глубоководных районах.

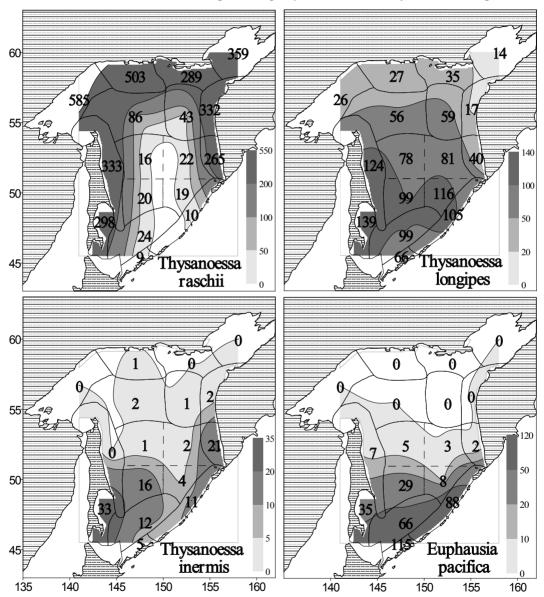


Рис. 2. Горизонтальное распределение и среднемноголетние значения биомассы (мг/м^3) эвфаузиид в эпипелагиали биостатистических районов Охотского моря (по: А.Ф. Волкову, наст. том) Fig. 2. Spatial distribution of total Euphausia biomass (mg/m^3) and their mean biomass by biostatistical areas (from: Volkov, this volume)

Конфигурация горизонтального распределения размерных классов в общих чертах повторяется, что видно на примере $Th.\ raschii$ (рис. 3). По мере роста и развития чис-

ленность и площади с высокими концентрациями уменьшаются, это возможно в том числе и вследствие пресса со стороны планктонофагов. Также проявляется различное отношение видов к районам, различающимся по глубине (рис. 4).

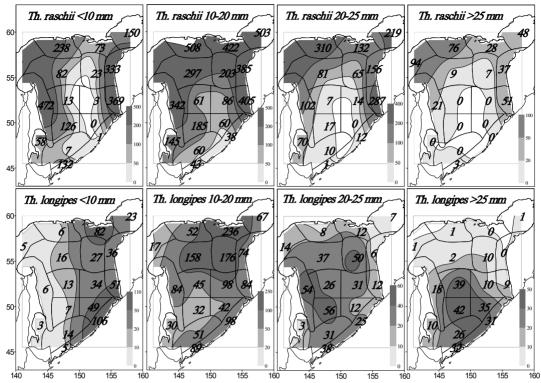


Рис. 3. Распределение численности 4 размерных классов Th. raschii и Th. longipes в эпипелагиали Охотского моря, экз./м²

Fig. 3. Abundance of 4 size classes of *Th. raschii* and *Th. longipes* in the epipelagic layer, ind./m²

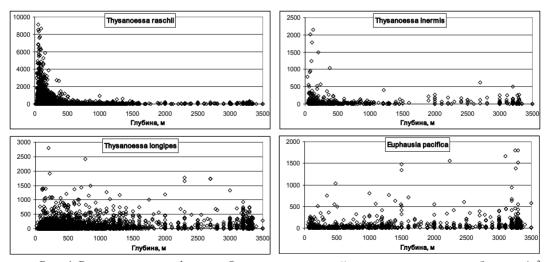


Рис. 4. Распределение эвфаузиид Охотского моря в районах, различных по глубине, $\mathrm{mr/m^2}$ Fig. 4. Mean biomass of euphausiids by biostatistical areas (mg/m²) in dependence on their mean depth

Раньше мы уже отмечали, что у целого ряда массовых видов зоопланктона, близких в систематическом и трофическом отношениях, зоны максимального обилия часто разобщены биотопически и ландшафтно в пространстве, что наряду со сложившимися историческими особенностями может снижать пищевую конкуренцию между ними (Волков, наст. том). Здесь могут быть показательными два вида, альтернативных по

отношению к районам, различным по глубине, — *Th. raschii* и *Th. longipes* (рис. 4), а график распределения *Th. raschii*, кроме того, наглядно демонстрирует, что в самых мелководных и глубоководных зонах вид имеет невысокое обилие (рис. 5).

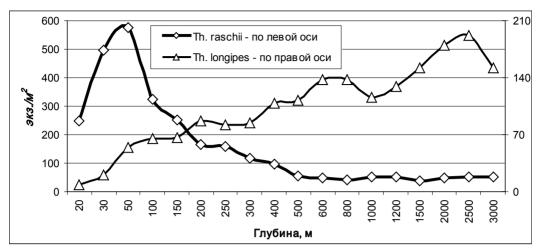
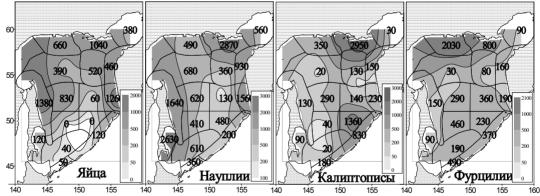



Рис. 5. Распределение численности *Th. raschii* и *Th. longipes* в районах, различных по глубине

Fig. 5. Mean abundance of *Th. raschii* and *Th. longipes* by biostatistical areas (ind./m²) in dependence of their mean depth

Ранние стадии развития эвфаузиид (яйца, науплии, калиптописы, фурцилии). Поскольку самым массовым видом эвфаузиид в Охотском море является *Th. raschii*, биомасса и численность которой значительно выше, чем прочих вместе взятых, следует полагать, что ей же принадлежит большая часть ранних стадий в шельфовой и сваловой зонах. Соответственно в глубоководных котловинах они по большей части должны быть отнесены к *Th. longipes* — второму по значимости виду, что подтверждается при визуальном сравнении рис. 2 и 6.

Puc. 6. Распределение численности ранних стадий эвфаузиид в эпипелагиали, экз./м² Fig. 6. Abundance of early stages of euphausiids in the epipelagic layer, ind./m²

Картина распределения ранних стадий в районах с разными глубинами (рис. 7) зависит от количества станций, выполненных помесячно в биостатистических районах, и попадания их в сравнительно короткие периоды существования (табл. 1), что наложило отпечаток на калиптописов, численность которых должна бы быть выше, чем фурцилий. Это произошло вследствие того, что в сравнительно короткий период их существования (май — часть июля) южная часть моря была покрыта лишь редкими станциями. Тем не менее полученные данные показывают общую схему распределения численности ранних стадий по акватории с разными глубинами.

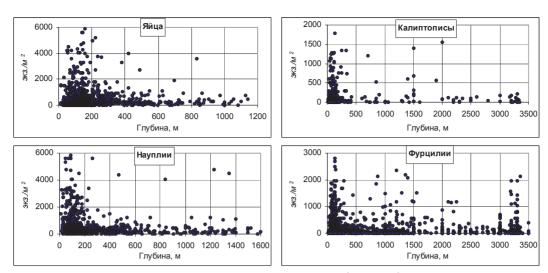


Рис. 7. Распределение численности ранних стадий эвфаузиид Охотского моря в районах, различных по глубине

Fig. 7. Mean abundance of early stages of euphausiids by biostatistical areas (ind./m²) in dependence on their mean depth

Распределение численности ранних стадий по биостатистическим районам и месяцам приведено в табл. 2, из которой январь, февраль и март исключены как зимние месяцы, в которые из-за высокой ледовитости съемки проводились в ограниченном объеме и на ограниченной акватории, а декабрь — как месяц, в который ранние стадии эвфаузиид практически отсутствовали.

Среднемесячная численность ранних стадий эвфаузиид в биостатистических районах, $_{
m 9K3./M^2}$ Table 2

Mean monthly abundance of early stages of euphausiids, by biostatistical areas, ind./m²

Таблица 2

Р-н	Апрель	Май	Июнь	Июль	Август	Сентябрь	Октябрь	Ноябрь	Апрель	Май	Июнь	Июль	Август	Сентябрь	Октябрь	Ноябрь	
				Я	йца				Калиптописы								
1	115	796	863	472	6	0	0	0	0	0	0	30	0	4	98	0	
2	689	2057	559	886	1911	111	0	0	0	0	0	69	8978	5325	380	0	
3	Н	2617	689	0	0	0	0	0	Н	0	0	0	1047	104	590	0	
4	Н	3938	4515	1369	0	0	0	0	Н	0	0	1647	0	32	0	0	
5	220	1310	803	0	0	0	0	85	0	0	45	0	18	13	0	0	
6	139	987	1950	0	25	0	0	0	0	41	0	0	11	617	0	0	
7	520	334	1678	162	71	1	0	0	2	0	414	162	198	0	1	0	
8	340	607	1971	2668	118	1833	0	0	0	0	195	494	449	0	0	11	
9a	0	4950	0	0	0	0	0	0	0	0	0	1449	0	0	0	0	
9b	125	Н	156	26	0	0	0	0	0	Н	640	66	0	0	5	0	
9c	Н	Н	Н	0	8	0	0	0	Н	Н	Н	155	0	0	0	0	
9d	Н	Н	0	0	0	Н	0	0	Н	Н	4001	1432	0	Н	0	0	
10	0	5096	2617	532	51	10	0	118	0	9	4	57	4	593	0	0	
11	Н	Н	115	106	278	0	111	0	Н	Н	171	32	210	0	46	234	
12	Н	Н	160	0	9	9	0	11	Н	Н	0	33	13	7	28	50	
13	Н	Н	1	39	57	375	0	0	Н	Н	2333	1703	35	58	23	0	
14	Н	Н	2	67	112	0	0	0	Н	Н	801	0	48	0	29	0	

																151104	
Р-н	Апрель	Май	Июнь	Июль	Август	Сентябрь	Октябрь	Ноябрь	Апрель	Май	Июнь	Июль	Август	Сентябрь	Октябрь	Ноябрь	
				Hay	/плии				Фурцилии								
1	15	294	3748	161	0	229	0	70	0	0	113	8	343	13	65	14	
2	179	634	753	6084	10380	4590	0	329	0	0	0	2303	577	626	459	30	
3	Н	440	1102	0	0	725	750	403	Н	0	0	8729	1221	92	109	12	
4	Н	1866	1165	7781	0	234	1663	0	Н	0	0	2154	1325	350	0	14	
5	150	389	2580	406	0	459	500	930	0	0	0	139	8	1	0	0	
6	388	1487	0	0	0	8	368	651	2	0	0	41	7	354	0	0	
7	111	384	990	970	3159	385	1409	0	0	0	0	104	687	0	1	0	
8	218	0	5298	5107	772	667	70	321	0	0	0	206	748	0	12	7	
9a	0	300	0	0	3357	110	1077	101	0	0	0	1235	143	0	55	0	
9b	370	Н	0	129	281	0	114	4	0	Н	0	437	1052	0	189	126	
9c	Н	Н	Н	80	1357	0	510	92	Н	Н	Н	1812	273	66	104	32	
9d	Н	Н	0	2250	0	Н	39	94	Н	Н	0	365	520	Н	0	46	
10	0	1591	3346	5759	459	1864	94	0	0	0	0	187	27	556	0	0	
11	Н	Н	0	1178	512	14063	0	0	Н	Н	0	38	86	0	0	316	
12	Н	Н	0	250	545	978	203	1694	Н	Н	0	414	255	38	174	51	
13	Н	Н	0	245	88	375	367	98	Н	Н	0	1362	403	0	60	24	
14	Н	Н	0	125	1613	0	409	0	Н	Н	0	183	453	0	1836	0	

Примечание. Н — нет данных.

В календарном плане периоды наиболее высокой численности ранних стадий эвфаузиид во времени были закономерно сдвинуты по мере их развития (рис. 8). Таким образом, рис. 8 и данные табл. 2 показывают, в какой период и в каких районах следует ожидать появления разных стадий эвфаузиид и уровень возможных величин их обилия в эпипелагиали. У *Th. raschii* в дневное время подавляющая часть всех размерных классов держалась в нижней эпипелагиали, в ночное время биомасса всех размерных классов многократно возрастала, при этом примерно половина всех особей поднималась в верхний горизонт.

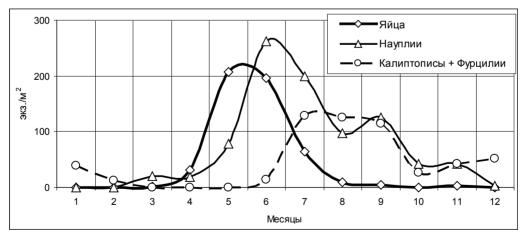


Рис. 8. Периоды наиболее высокой численности ранних стадий эвфаузиид, средние величины

Fig. 8. Usual seasons of the highest abundance for early stages of euphausiids

В табл. 3 и 4 приведены среднесезонные численность и биомасса ранних стадий эвфаузиид в эпипелагиали Охотского моря, дающие представление о возможных количественных показателях.

Таблица 3

Среднесезонные показатели ранних стадий эвфаузиид в эпипелагиали Охотского моря: верхняя строка — численность (экз./м²) и биомасса (мг/м²), нижняя — процентный состав Table 3

Mean seasonal abundance (ind./m²) and biomass (mg/m²) of early stages of euphausiids in the epipelagic layer; bottom row — percent portion

C		День		Ночь										
Состав	Весна	Весна Лето		Весна	Лето	Осень								
	Численность													
Яйца	2689	1836	52	1702	2161	33								
Яица	80,4	28,8	6,5	71,9	31,2	3,3								
Hormany	615	3803	646	569	4084	422								
Науплии	18,4	59,7	80,5	24,1	59,0	42,5								
V	39	731	104	95	677	537								
Калиптописы + фурцилии	1,2	11,5	13,0	4,0	9,8	54,2								
		Биомасса	ı											
u×	52	55	2	33	70	0								
Яйца	37,0	7,7	0,9	14,6	9,4	0								
Hormany	21	115	20	21	133	13								
Науплии	14,7	16,0	11,8	9,0	17,8	1,2								
V	68	547	145	175	547	1035								
Калиптописы + фурцилии	48,3	76,3	87,3	76,4	72,9	98,8								

Таблица 4

Биомасса и численность эвфаузиид и их ранних стадий в верхней и нижней эпипелагиали в разное время суток (день-ночь)

Table 4
Biomass and abundance of all euphausiids and their early stages in the upper and deeper parts
of the epipelagic layer in daytime and nighttime

				а, мг/м ²		Численность, экз./м ²						
Состав	День			Ночь			День					
Состав	200-0	50-0	200– 50	200-0	50-0	200- 50	200-0	50-0	200- 50	200-0	50-0	200– 50
Яйца	11	86	14	7	100	0	404	74	26	231	98	2
Науплии	73	77	23	72	61	39	2240	76	24	2194	63	37
Калиптописы	13	54	46	9	65	35	94	48	52	52	74	26
Фурцилии	57	89	11	409	38	62	56	91	9	237	47	53
Th. raschii	1264	6	94	5454	45	55	35	7	93	189	49	51
Th. raschii 6-10 мм	27	4	96	135	70	30	6	6	94	24	71	29
Th. raschii 10-20 мм	844	9	91	3417	44	56	23	8	92	139	45	55
Th. raschii > 20 mm	393	0	100	1903	47	53	6	0	100	26	47	53
Th. longipes	2000	19	81	11182	38	62	34	41	59	174	52	48
Th. longipes 6–10 мм	19	86	14	111	78	22	5	81	19	30	80	20
Th. longipes 10-20 мм	501	37	63	1846	52	48	18	41	59	60	59	41
Th. longipes 20–25 mm	230	44	56	2741	34	66	3	65	35	41	37	63
Th. longipes > 25 mm	1250	7	93	6483	34	66	8	7	93	43	35	65
Th. inermis	213	2	98	397	13	87	31	0	100	8	15	85
Th. inermis 6–10 мм	102	0	100	0	0	0	28	0	100	0	0	0
Th. inermis 10-20 мм	64	7	93	140	20	80	2	7	93	5	20	80
Th. inermis > 20 mm	47	0	100	257	10	90	1	0	100	4	10	90
E. pacifica	1331	20	80	2657	71	29	37	32	68	84	81	19
E. pacifica 6-10 мм	23	87	13	27	100	0	5	86	14	8	100	0
E. pacifica 10-20 мм	703	33	67	1793	68	32	23	31	69	62	80	20
E. pacifica > 20 mm	605	3	97	836	76	24	9	3	97	14	79	21

Биомасса и численность эвфаузиид в верхней и нижней эпипелагиали (табл. 4). В некоторых съемках на акватории с глубинами более 200 м, помимо тотальных, дополнительно были выполнены обловы верхней эпипелагиали — слой 0–50 м. Ме-

тодом вычитания были рассчитаны величины численности и биомассы для нижней эпипелагиали — слоя 50–200 м. В дневное и ночное время было выполнено примерно одинаковое количество станций — 234 и 262, большая часть их пришлась на глубоководную зону (рис. 9).

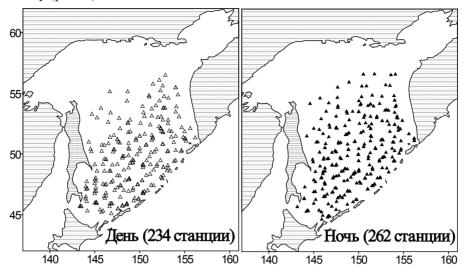


Рис. 9. Станции с обловами планктона в слое 0–50 и 0–200 м

Fig. 9. Stations with plankton sampling from the layers 0-50 m and 0-200 m

Данные табл. 4 показывают биомассу и численность ранних стадий и размерных классов эвфаузиид, как изменялось их количество в верхней и нижней эпипелагиали с учетом светлого и темного времени суток.

Количество яиц, науплиев и калиптописов в дневное и ночное время было вполне сопоставимым, поскольку большая их часть круглые сутки держалась в верхней эпипелагиали, количество же фурцилий в ночное время возрастало: по биомассе в 8 раз, по численности — в 4. Из фурцилий, обитавших в дневное время в эпипелагиали, большая часть также держалась в верхнем слое, в ночное же время резко возрастало их количество в слое 50–200 м, по-видимому, за счет поднявшихся из более глубоких слоев. Здесь следует искать объяснения в значительной возрастной и размерной разнородности этой группы: известно, что у фурцилий наблюдается наличие 6 стадий (Ломакина, 1978), у которых первая и последние по размеру отличаются вдвое, таким образом, фурцилии, обитающие днем в слое 0–50, представлены первыми стадиями, а мигрирующие ночью из больших глубин — более поздними, поведение которых уже ближе к взрослым и амплитуда вертикальных миграций уже достаточно велика.

Местоположения дневных и ночных станций, за редким исключением, не совпадали, поэтому отдельные данные выпадали за пределы общих закономерностей, но в большинстве случаев вполне им соответствовали. В дневное время эвфаузииды всех размерных классов предпочитали держаться глубже 50 м, в ночное же время они распределялись в эпипелагиали более равномерно.

Среднесезонные показатели биомассы и численности. В табл. 5 показаны среднемноголетние среднесезонные количественные значения биомассы и численности размерных классов эвфаузиид в эпипелагиали Охотского моря в целом для темного времени суток. Эти осредненные данные показывают сезонную динамику размерных классов, которая у разных видов может принципиально различаться: так, у мелких Th. raschii максимальные биомасса и численность наблюдались летом, а у среднеразмерных и крупных — весной и осенью, тогда как у Th. longipes отмечалась обратная картина. Возможно, это связано со сроками размножения, темпами роста и развития ранних стадий. Конечно, эти показатели в разных районах моря могут различаться в 10–15 раз, что объясняется неравномерностью горизонтального распределения, но при тотальных обсчетах они служат ориентирами.

Среднесезонные показатели размерных классов эвфаузиид в эпипелагиали Охотского моря (2000–2013 гг.): верхняя строка — биомасса (мг/м²) и численность (экз./м²), нижняя — процентный состав; ночное время

Table 5
Mean seasonal abundance (ind./m²) and biomass (mg/m²) of size classes of euphausiids in the epipelagic layer; bottom row — percent portion at night

C		Биомасса		Численность				
Состав	Весна	Лето	Осень	Весна	Лето	Осень		
TI 1 (10	931	1220	612	179	809	143		
Th. raschii 6–10 мм	3,2	8,2	2,4	17,0	75,0	19,6		
TI 1::10 20	10344	3196	9462	549	114	373		
Th. raschii 10–20 мм	35,7	21,5	37,4	52,2	10,5	51,1		
Tl	17681	10471	15223	324	156	214		
Th. raschii > 20 мм	61,1	70,3	60,2	30,8	14,5	29,3		
Сумма	28956	14887	25297	1052	1079	730		
The Louisiness 6, 10 year	105	42	101	34	11	26		
Th. longipes 6–10 мм	1,5	0,3	1,1	14,3	6,2	14,5		
The longings 10, 20 year	3073	2516	2224	158	73	82		
Th. longipes 10–20 мм	45,2	18,5	25,1	66,3	40,5	46,0		
The longings 20, 25 year	2381	3132	2810	39	44	45		
Th. longipes 20–25 mm	35,0	23,1	31,7	16,4	24,9	25,4		
The Louisines > 25 and	1247	7876	3737	7	50	25		
Th. longipes > 25 mm	18,3	58,1	42,1	3,0	28,4	14,1		
Сумма	6806	13566	8872	238	178	178		
Th. inermis 10–20 mm	287	19	114	15	1	3		
1n. mermis 10–20 mm	36,6	14,6	35,4	79,1	33,3	51,5		
Th. inermis > 20 mm	497	111	207	4	1	3		
Th. thermis < 20 mm	63,4	85,4	64,6	20,9	66,7	48,5		
Сумма	784	130	321	19	2	6		
E nacifica 6 10 xps	6	24	12	1	5	5		
E. pacifica 6–10 мм	0,4	1,2	1,0	2,3	8,1	11,5		
E. pacifica 10–20 мм	1155	1012	903	43	37	30		
E. расіліса 10—20 мм	68,4	50,5	76,4	80,1	62,5	76,8		
E. pacifica > 20 мм	528	967	267	9	18	5		
<u> Е. расука / 20 мм</u>	31,2	48,3	22,6	17,6	29,4	11,7		
Сумма	1689	2003	1182	53	60	40		
Станций	948	91	380	948	91	380		

Заключение

При картировании горизонтального распределения обилия исследуемых эвфаузиид, их размерных классов и ранних стадий развития был применен метод, при котором за станции принимались центральные точки стандартных биостатистических районов. Этот метод был впервые применен для всей акватории северной части Тихого океана, включая Охотское и Берингово моря (Волков, наст. том). При этом с карт распределения исчезают случайные мелкие элементы — нестационарные локальные пятна повышенных или пониженных концентраций. Одновременно с изолиниями на картах приведены количественные показатели для каждого из районов — таким образом повышается уровень их информативности. Эти карты и графики распределения биомассы 4 видов эвфаузиид и численности их ранних стадий развития, привязанных постанционно к глубинам, показывают, что, несмотря на широкое распределение по всей акватории, Th. raschii и Th. inermis — надшельфовые виды, а Th. longipes и E. pacifica — океанические. При этом два самых массовых вида — Th. raschii и Th. longipes — по отношению к глубинам являются явными антиподами. *Th. inermis* — вид более массовый в Беринговом море, а *E. pacifica* — в СТО и, по-видимому, в Охотское море проникает через Курильские проливы, поэтому его заметные концентрации обычно приурочены к южной части.

Приведены табличные данные по биомассе и численности ранних стадий и размерных классов эвфаузиид и показано, как изменялось их количество в верхней и нижней эпипелагиали при переходе от светлого времени суток к темному. Подавляющая часть всех размерных классов держалась в нижней эпипелагиали, в ночное время биомасса всех размерных классов многократно возрастала, при этом примерно половина всех особей поднималась в верхний горизонт. Количество яиц, науплиев и калиптописов в дневное и ночное время было вполне сопоставимым, поскольку большая их часть круглые сутки держалась в верхней эпипелагиали, количество же фурцилий в ночное время возрастало: по биомассе в 8 раз, по численности — в 4. Из фурцилий, обитавших в дневное время в эпипелагиали, большая часть также держалась в верхнем горизонте, в ночное же время резко возрастало их количество в слое 50-200 м, по-видимому, за счет поднявшихся из более глубоких слоев: фурцилии, обитающие днем в слое 0-50, представлены первыми стадиями, а мигрирующие ночью из больших глубин — более поздними, имеющими амплитуду суточных миграций, уже сопоставимую с более взрослыми особями. В календарном плане периоды наиболее высокой численности ранних стадий эвфаузиид по мере их развития были закономерно сдвинуты во времени.

Сезонная динамика размерных классов у разных видов может принципиально различаться: так, у мелких *Th. raschii* максимальные биомасса и численность наблюдались летом, а у среднеразмерных и крупных — весной и осенью, тогда как у *Th. longipes* наблюдалась обратная картина.

Список литературы

Волков А.Ф. Биомасса, численность и размерная структура эвфаузиид северной части Охотского моря в весенний период 1998–2001 гг. // Изв. ТИНРО. — 2002. — Т. 130. — С. 336–354.

Волков А.Ф. Интегральные значения биомассы и запаса зоопланктона в эпипелагиали 71 района севера Тихого океана, включая Берингово и Охотское моря, и схемы распределения массовых видов // Наст. том.

Волков А.Ф. Методика сбора и обработки планктона и проб по питанию нектона (по-шаговые инструкции) // Изв. ТИНРО. — 2008а. — Т. 154. — С. 405–416.

Волков А.Ф. Интегральные схемы количественного распределения массовых видов зоопланктона дальневосточных морей и северо-западной части Тихого океана по среднемноголетним данным (1984–2006 гг.) // Изв. ТИНРО. — 2008б. — Т. 154. — С. 135–143.

Волков А.Ф. Сезонная и многолетняя динамика в планктоне эпипелагиали присахалинских вод Охотского моря // Изв. ТИНРО. — 2013а. — Т. 174. — С. 170–186.

Волков А.Ф. Сезонная и многолетняя динамика в планктоне эпипелагиали прикамчатских вод Охотского моря // Изв. ТИНРО. — 2013б. — Т. 175. — С. 206–233.

Журавлев В.М. Экология эвфаузиид Охотского моря: монография. — М.: ВНИРО, 1984. — 74 с. Кузнецова Н.А. Питание и пищевые отношения нектона в эпипелагиали северной части Охотского моря: монография. — Владивосток: ТИНРО-центр, 2005. — 235 с.

Ломакина Н.Б. Эвфаузииды Мирового океана (Euphausiacea). — М. ; Л., 1978. — 222 с. (Опред. по фауне СССР, изд. ЗИН АН СССР; Вып. 118.)

Чучукало В.И. Питание и пищевые отношения нектона и нектобентоса в дальневосточных морях : монография. — Владивосток : ТИНРО-центр, 2006. — 484 с.

Чучукало В.И., Кузнецова Н.А., Напазаков В.В. Сезонное распределение эвфаузиид в Беринговом и Охотском морях и прилежащих водах Тихого океана // Изв. ТИНРО. —1996. — Т. 119. — С. 256–281.

Шунтов В.П., Волков А.Ф., Темных О.С., Дулепова Е.П. Минтай в экосистемах дальневосточных морей : монография. — Владивосток : ТИНРО, 1993. — 426 с.

Шунтов В.П., Темных О.С. Тихоокеанские лососи в морских и океанических экосистемах : монография. — Владивосток : ТИНРО-центр, 2008. — Т. 1. — 481 с.

Шунтов В.П., Темных О.С. Тихоокеанские лососи в морских и океанических экосистемах : монография. — Владивосток : ТИНРО-центр, 2011. — Т. 2. — 473 с.

Volkov A.F. Localization of spawning areas of *Thysanoessa raschii* in the Sea of Okhotsk in spring // Proc. of the Third Workshop on the Okhotsk Sea and Adjacent Areas. PICES Sci. Rep. — 2004. — № 26. — P. 204–209.