2022

Том 202, вып. 3. С. 737–739.

Izvestiya TINRO, 2022, Vol. 202, No. 3, pp. 737–739.

РЕЦЕНЗИИ REVIEWS

РЕЦЕНЗИЯ НА СТАТЬЮ В.Н. ДОЛГАНОВА (ИЗВЕСТИЯ ТИНРО. 2022. Т. 202, ВЫП. 2. С. 245–254)

Л.А. Животовский 1,2*

¹ Всероссийский научно-исследовательский институт рыбного хозяйства и океанографии, 105187, г. Москва, Окружной проезд, 19; ² Институт общей генетики им. Н.И. Вавилова РАН, 119991, г. Москва, ул. Губкина, 3

Основная тема статьи В.Н. Долганова [2022] — происхождение лососевых рыб, многие из которых являются анадромными — размножающимися в пресной воде рек и озер и нагуливающимися в море. Наличие анадромных и диадромных видов рыб, т.е. обитающих в двух средах — солено- и пресноводной, завязано на важные проблемы: эволюцию миграций у рыб, перенос биологически важных веществ между средами, функционирование экосистем, оценки запасов водных биологических ресурсов, их промысла, воспроизводства и охраны и др. Теоретически нерешенным остается, в частности, дискуссионный вопрос о генезисе лососеобразных (отряд Salmoniformes, часть видов из которых — пресноводные, а часть — анадромные): является ли их общий предок морского или пресноводного происхождения?

В статье В.Н. Долганова [2022] критикуется подход Л.А. Животовского [2015] к решению вопроса о пресноводном генезисе Salmoniformes, учитывающий генетическую историю таксонов: молекулярную филогению, происхождение путем полногеномной дупликации, вероятностную оценку их происхождения. Не касаясь общих аргументов «морской» и «пресноводной» точек зрения, подробно рассмотренных в статьях Л.А. Животовского, В.Н. Долганова и в цитируемых ими научных публикациях, укажем на основные недочеты в статье В.Н. Долганова [2022] и в высказанных там аргументах против пресноводного происхождения лососевых рыб.

1. Пресноводное или морское происхождение лососеобразных? Первое и главное при ответе на этот вопрос — определить филогенетически близкие к Salmoniformes формы, в первую очередь — сестринскую, и оценить их генезис. Основных кандидатов на роль сестринского к лососеобразным таксона — два: корюшкообразные (Osmeriformes), у которых есть морские формы, и шукообразные (Esociformes), которые являются пресноводными.

В зависимости от того, какой из этих таксонов сестринский, чаша весов склонится в пользу морского либо пресноводного генезиса лососевых рыб. В.Н. Долганов разделяет взгляд на близость Osmeriformes к лососеобразным и, соответственно, морской генезис Salmoniformes. Однако современные методы молекулярной филогении доказали, что именно щукообразные, а не корюшковые являются сестринской кладой к лососеобразным [López et al., 2004; Нельсон, 2009, с. 280; Near et al., 2012; Davidson,

^{*} Животовский Лев Анатольевич, доктор биологических наук, заведующий лабораторией, levazh@gmail.com.

[©] Животовский Л.А., 2022

- 2013; Betancur-R et al., 2017]. В.Н. Долганов заключает (с. 247): «Если в пределах надотряда Protacanthopterygii анализировать лососеобразных только совместно с щукообразными, то их генезис получается пресноводным, но при анализе всего надотряда он морской». Безусловно, их надо анализировать совместно, как сестринские формы, что по указанной логике В.Н. Долганова влечет вывод о пресноводном происхождении Salmoniformes [см. Dodson et al., 2009; Davidson, 2013; Животовский, 2015].
- 2. О филогенетическом положении и возрасте сахалинского тайменя. Ошибочно представление В.Н. Долганова о возрасте и филогенетическом положении рода Parahucho с единственным представителем — сахалинским тайменем P. perryi: «Возраст Parahucho составляет 40 млн лет, а роды Hucho и Brachymystax сформировались всего 2-3 млн лет назад» [Долганов, 2022, с. 249]. Сказанное можно понять так: сахалинский таймень гораздо древнее видов *Hucho* и *Brachymystax*. Но это не так, на деле «2–3 млн лет» означают лишь время дивергенции этих родов, но не возраст клады *Hucho+Brachymystax*. Действительно, согласно А.Г. Осинову [2004]: «По аллозимным данным их [Hucho и Brachymystax] расхождение произошло 1-2 млн лет назад [Осинов, 1991], а по митохондриальным — 2-3 млн лет назад [Shed'ko et al., 1996]». Более того, согласно молекулярно-генетическим датировкам появление сахалинского тайменя датируется не 40 млн лет, а гораздо позже — около 27 млн лет назад [Crête-Lafrenière et al., 2012]. Эта оценка также дополняется находкой ископаемой рыбы в Агневской свите на о. Сахалин (возраст 16–19 млн лет), отнесенной к *Parahucho* spp. [Назаркин, 2000]. На эволюционном древе лососевых рыб сахалинский таймень занимает промежуточное положение между кладой Salvelinus+Oncorhynchus и родом Salmo [см. Животовский, 2015].
- 3. О времени формирования анадромности у лососевых рыб. В.Н. Долганов допустил невнимательность при прочтении критикуемой статьи и вывел из этого ошибочное заключение. Речь идет о филогении лососевых рыб, данной в статье Л.А. Животовского [2015] и частично скопированной на с. 248 статьи В.Н. Долганова [2022]. В.Н. Долганов критикует местоположение «вертикальной стрелки» на этой филогенетической схеме, будто бы она ошибочно указывает момент появления анадромности у отряда лососеобразных: «...предполагаемую «точку формирования анадромности» следует перенести на более раннее время... Отсутствие пресноводных лососеобразных до «точки возникновения анадромности» делает выводы Л.А. Животовского [2015] о времени появления у них анадромности бездоказательными». Однако в скопированном В.Н. Долгановым примечании к схеме ясно сказано, что в публикации Л.А. Животовского [2015] эта вертикальная стрелка отмечает время появления анадромности не у всех лососеобразных, а лишь у видов подсемейства Salmoninae: «Вертикальная стрелка после точки 5 — возникновение анадромности у видов Salmoninae» [Долганов, 2022: подпись к рисунку, с. 248]. Аналогичная невнимательность приведена на с. 248 статьи В.Н. Долганова: «Также для доказательства пресноводного происхождения лососеобразных рыб пресноводные ныне таймени рода Hucho и ленки рода Brachymystax [не относящихся к Salmoninae] помещены на филогенетической схеме до «точки появления анадромности». Подобная невнимательность повторяется в очередной раз на с. 248: «Сиги подсемейства Coregoninae также считаются пресноводными [Животовский. 2015], хотя они являются экологическим аналогом гольцов рода Salvelinus, помещенных в группу анадромных рыб». Однако в публикации Л.А. Животовского [2015] нет ни слова о пресноводности сигов. И быть не могло, так как это общеизвестно, что сиговые (Coregoninae) — полупроходные рыбы. У этого подсемейства анадромность возникла независимо от анадромности Salmoninae [Davidson, 2013]. И вообще, диадромность может возникать независимо в разных таксонах рыб [McDowall, 1997].

Список литературы

Долганов В.Н. Лососеобразные (Salmoniformes): морское или пресноводное происхождение? // Изв. ТИНРО. — 2022. — Т. 202, вып. 2. — С. 245–254. DOI: 10.26428/1606-9919-2022-202-245-254.

Животовский Л.А. Генетическая история лососевых рыб рода Oncorhynchus // Генетика. — 2015. — Т. 51, № 5. — С. 584–599. DOI: 10.7868/S0016675815050100.

Назаркин М.В. Миоценовые рыбы из агневской свиты острова Сахалин: фауна, систематика и происхождение : автореф. дис. ... канд. биол. наук. — СПб., 2000. — 22 с.

Нельсон Д.С. Рыбы мировой фауны : моногр. — М. : КД Либроком, 2009. — 876 с.

Осинов А.Г. Лососевые рыбы (Salmonidae, Salmoniformes): происхождение, эволюция, филогения, систематика, охрана : автореф. дис. ... д-ра биол. наук. — М., 2004. — 48 с.

Betancur-R R., Wiley E.O., Arratia G. et al. Phylogenetic classification of bony fishes // BMC Evolutionary Biology. — 2017. — Vol. 17(1). — P. 162–202. DOI: 10.1186/s12862-017-0958-3.

Crête-Lafrenière A., Weir L.K., Bernatchez L. Framing the Salmonidae family phylogenetic portrait: A more complete picture from increased taxon sampling // PLoS One. — 2012. — Vol. 7. — e46662. DOI: 10.1371/journal.pone0046662.

Davidson W.S. Understanding salmonid biology from the Atlantic salmon genome // Genome. — 2013. — Vol. 56, № 10. — P. 548–550. DOI: 10.1139/gen-2013-0163.

Dodson J.J., Laroche J., Lecomte F. Contrasting evolutionary pathways of anadromy in euteleostean fishes // Challenges for Diadromous Fishes, in a Dynamic Global Environment: Amer. Fish. Soc. Simpos. — 2009. — Vol. 69. — P. 63–77.

López J.A., Chen W.-J., Orti G. Esociform phylogeny // Copeia. — 2004. — № 3. — P. 449–463. DOI: 10.1643/CG-03-087R1.

McDowall R.M. The evolution of diadromy in fishes (revisited) and its place in phylogenetic analysis // Reviews in Fish Biology and Fisheries. — 1997. — Vol. 7. — P. 443–462.

Near Th.J., Eytan R.I., Dornburg A. Resolution of ray-finned fish phylogeny and timing of diversification // PNAS. — 2012. — Vol. 109(34). — P. 13698–13703. DOI: 10.1073/pnas.1206625109.

Поступила в редакцию 31.08.2022 г. Принята к публикации 1.09.2022 г. The article was submitted 31.08.2022; accepted for publication 1.09.2022