Entropy flux through the oceanatmosphere boundary as an integral indicator of the ocean climate change
https://doi.org/10.26428/1606-9919-2025-205-728-736
EDN: MDSIMQ
Abstract
Climatic trend of the entropy flux across the water-air boundary is determined for the oceanographic section along 180o meridian in the Pacific Ocean. The flux is calculated on the average annual data for SST and components of heat balance with 4-degree spatial resolution for 1979–2024. The flux is negative with the value ~3 . 10–2 W/m2K and has a tendency toward zero. Mean rate of the turbulent energy dissipation per unit mass is evaluated as ~2.10–7 m2/s3. Different trends in thermal conditions for the «closed» and «open» polar areas in the Southern and Northern Hemispheres, respectively, are discussed. Possible feedback of the parameters toward climate stability is noted: the lower the entropy flux, the weaker water dynamics, and the higher SST difference between tropical and polar zones, that leads to reverse process of increasing the entropy flux and returns the ocean back to its previous stationary state.
About the Authors
T. R. KilmatovRussian Federation
Talgat R. Kilmatov, D.Phys.-Math., professor
43, Baltiyskaya Str., Vladivostok, 690041;
50, Verkhneportovaya Str., Vladivostok, 690003
N. I. Rudykh
Russian Federation
Natalia I. Rudykh, Ph.D., senior researcher
43, Baltiyskaya Str., Vladivostok, 690041
References
1. Glansdorff, P. and Prigogine, I., Thermodynamic theory of structure, stability and fluctuation, Université Libre de Bruxelles, Brussels, Belgium, and University of Texas, Austin, Texas, 1971.
2. Golitsyn, G.S. and Mokhov, I.I., On the stability and extremal properties of climatic models, Izv. Akad. Nauk SSSR, Fizika atmosfery i okeana, 1978, vol. 14, no. 4, pp. 378–387.
3. Kilmatov, T.R., Metody neravnovesnoy termodinamiki v okeanologii (Methods of nonequilibrium thermodynamics in oceanology), Vladivostok: Dal’nevost. Otd. Akad. Nauk SSSR, 1987.
4. Kilmatov, T.R., The average entropy flux through the surface of the World Ocean, Dokl. Akad. Nauk SSSR, 1984, vol. 275, no. 4, pp. 1015–1018.
5. Kraus, E.B., Atmosphere-ocean interaction, Oxford, Clarendon Press, 1972.
6. Landau, L.D. and Lifshitz, E.M., Teoreticheskaya fizika : ucheb. posob. : dlya vuzov. V 10 t. T. 5: Statisticheskaya fizika. Ch. 1 (Theoretical Physics: a textbook: for universities. In 10 volumes. Vol. 5: Statistical Physics. Part 1), 5th ed., Moscow: FIZMATLIT, 2002.
7. Sedov, L.I., Mekhanika sploshnoy sredy (Continuum Mechanics), vol. 1, Moscow: Nauka, 1973.
8. Shuleikin, V.V., Fizika morya (Physics of the Sea), Moscow: Nauka, 1968.
9. Bannon, P.R. and Najjar, R.G., Heat-Engine and Entropy-Production Analyses of the World Ocean, J. Geophys. Res. Oceans, 2018, vol. 123, no. 8, pp. 8532–8547. doi 10.1029/2018JC014261.
10. Ghill, M. and Lucarini, V., The Physics of Climate Variability and Climate Change, Reviews of Modern Physics, 2020, vol. 92, no. 3, pp. 1–77. doi 10.1103/RevModPhys.92.035002.
11. Huang, B., Thorne, P.W., Banzon, V.F., Boyer, T., Chepurin, G., Lawrimore, Jay, H., Menne, M.J., Smith, T.M., Vose, R.S., and Huai-Min Zhanget, Extended Reconstructed Sea Surface Temperature, Version 5 (ERSSTv5): Upgrades, validations, and intercomparisons, J. Climate, 2017, vol. 30, no. 20, pp. 8179–8205. doi 10.1175/JCLI-D-16-0836.1.
12. Kanamitsu, M., Ebisuzaki, W., Woollen, J., Yang, S-K., Hnilo, J.J., Fiorino, M., and Potter, G.L., NCEP-DOE AMIP-II Reanalysis (R-2), Bulletin of the American Meteorological Society, 2011, vol. 83, no. 11, pp. 1631–1644. doi 10.1175/BAMS-83-11-1631.
13. Kleidon, A., Zehe, E., and Loritz, R., ESD Ideas: Structures dominate the functioning of Earth systems, but their dynamics are not well represented, Earth Syst. Dynam., 2019, Discuss., [preprint]. doi 10.5194/esd-2019-52.
14. Lucarini, V., Fraedrich, K., and Ragone, F., New Results on the Thermodynamic Properties of the Climate System, J. Atmos. Sci., 2011, vol. 68, no. 10, pp. 2438–2458. doi 10.1175/2011JAS3713.1.
15. Lucarini, V. and Pascale, S., Entropy production and coarse graining of the climate fields in a general circulation model, Climate Dynamics, 2014, vol. 43, pp. 981–1000. doi 10.1007/s00382-014-2052-5.
16. Paltridge, G.W., A Physical Basis for a Maximum of Thermodynamic Dissipation of the Climate System, Quart. J. Roy. Meteor. Soc., 2001, vol. 127, no. 572, pp. 305–313. doi 10.1002/qj.49712757203.
17. Pascale, S., Gregory, J.M., Ambaum, M., and Tailleux, R., A parametric sensitivity study of entropy production and kinetic energy dissipation using the FAMOUS AOGCM, Climate Dynamics, 2012, vol. 38, no. 5, pp. 1211–1227. doi 10.1007/s00382-011-0996-2.
18. Pascale, S., Gregory, J.M., Ambaum, M., and Tailleux, R., Climate entropy budget of the HadCM3 atmosphere–ocean general circulation model and of FAMOUS, its low-resolution version, Climate Dynamics, 2011, vol. 36, pp. 1189–1206. doi 10.1007/s00382-009-0718-1.
19. Yang, Y., Sun, H., Wang, J., Zhang, W., Zhao, G., Wang, W., Cheng, L., Chen, L., Qin, H., and Cai, Zh., Global ocean surface heat fluxes derived from the maximum entropy production framework accounting for ocean heat storage and Bowen ratio adjustments, Earth System Science Data, 2025, vol. 17, no. 3, pp. 1191–1216. doi 10.5194/essd-17-1191-2025.
20. Schlitzer, R., Ocean Data View, https://odv.awi.de, 2025.
Review
For citations:
Kilmatov T.R., Rudykh N.I. Entropy flux through the oceanatmosphere boundary as an integral indicator of the ocean climate change. Izvestiya TINRO. 2025;205(4):728-736. (In Russ.) https://doi.org/10.26428/1606-9919-2025-205-728-736. EDN: MDSIMQ



























