Preview

Izvestiya TINRO

Advanced search

Evaluation of primary production in the northeastern Japan Sea on the base of shipboard and satellite data

https://doi.org/10.26428/1606-9919-2018-195-184-200

Abstract

Satellite data on chlorophyll concentration from ESA (CCI-OC) and Goddard Space Flight Center, NASA and shipboard observations of CTD, P, N, Si, inorganic carbon, DCI, and Chl a at 38 stations in the northeastern Japan Sea (46th cruise of RV Academik M.A. Lavrentyev on July 9–19, 2009) are analyzed. The highest chlorophyll concentrations were found in the subsurface layer (depth 20–40 m) or even deeper in the Polar Front zone, so they were not reflected in the satellite data. The minimal depths of the subsurface maximum were observed northward from the Polar Front where the estimations of chlorophyll concentration in the upper optical layer (Zd = 1/kd) were similar for the shipboard and satellite measurements (on average 0.384 ± 0.160 mg/m3 and 0.406 ± 0.120 mg/m3, respectively). Primary production was calculated using the assimilation number 4.46 mgC/mgChl per hour. Depth of euphotic layer was estimated using the vertical profles of nutrients and Chl a. Within this layer, the primary production in the northeastern Japan Sea was evaluated for the shipboard stations as 895–2275 mgС.m–2.day–1, on average 1450 ± 430 mgС.m–2.day–1, and for the satellite data on average 770 ± 190 mgС.m–2.day–1. The estimations based on the shipboard and satellite data were weakly correlated. The shipboard estimations exceed considerably the results obtained by Koblents-Mishke et al. (1956, 1970) and Yamada et al. (2005). Poor accuracy of satellite estimations of primary production is concluded because the deeper part of the euphotic layer with the maximum concentration of chlorophyll is in shadow for satellite sensors.

About the Authors

V. I. Zvalinsky
Тихоокеанский океанологический институт ДВО РАН
Russian Federation

Zvalinsky Vladimir I., D.Sc., principal researcher



P. V. Lobanova
Санкт-Петербургский государственный университет
Russian Federation

Lobanova Polina V., assistant



P. Ya. Tishchenko
Тихоокеанский океанологический институт ДВО РАН
Russian Federation

Tishchenko Pavel Ya., D.Sc., head of laboratory



V. B. Lobanov
Тихоокеанский океанологический институт ДВО РАН
Russian Federation

Lobanov Vyacheslav B., Ph.D., director



References

1. Abakumov, A.I. and Izrailsky, Yu.G., Model method of vertical chlorophyll concentration reconstruction from satellite data, Komp’yuternye Issled. Model., 2013, vol. 5, no. 3, pp. 473–482.

2. Barteneva, O.D., Polyakova, E.A., and Rusin, N.P., Rezhim estestvennoi osveshchennosti na territorii SSSR (Natural Illumination Regime in the USSR), Leningrad: Gidrometeoizdat, 1971.

3. Erlov, N.G., Optika morya (Optics of the Sea), Leningrad: Gidrometeoizdat, 1980.

4. Zvalinsky, V.I., Process of primary production in the sea, Izv. Tikhookean. Nauchno–Issled. Inst. Rybn. Khoz. Okeanogr., 2006, vol. 147, pp. 276–302.

5. Zvalinsky, V.I. and Litvin, F.F., Dependence of photosynthesis on carbon dioxide concentration, intensity and spectral composition of light, Fiziol. Rast., 1988, vol. 35, pp. 444–457.

6. Zvalinskii, V.I., Lobanov, V.B., Zakharkov, S.P., and Tishchenko, P.Ya., Chlorophyll, delayed fluorescence, and primary production in the northwestern part of the Sea of Japan, Oceanology, 2006, vol. 46, no. 1, pp. 23–32.

7. Zvalinsky, V.I., Lobanova, P.V., Tishchenko, P.Ya., and Lobanov, V.B., Estimation of primary production in the northwestern Sea of Japan inferred from ship- and satellite-based observations, Oceanology (in press).

8. Zvalinsky, V.I. and Tishchenko, P.Ya., Modeling photosynthesis and the growth of marine phytoplankton, Oceanology, 2016, vol. 56, no. 4, pp. 527–539. doi https://doi.org/10.1134/S0001437016040135

9. Lobanova, P.V., Zvalinski, V.I., and Tishchenko, P.Ya., Primary production of phytoplankton and concentration of chlorophyll-a in the western part of the Japan/East Sea from remote sensing and feld data, Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa, 2017, vol. 14, no. 2, pp. 135–147. doi 10.21046/2070-7401-2017-14-2-135-147

10. Koblents-Mishke, O.I., Value of primary production of the Pacifc Ocean, Okeanologiya, 1965, vol. 5, no. 2, pp. 325–337.

11. Koblents-Mishke, O.I., Volkovinskii, V.V., and Kabanova, Yu.G., Primary production of plankton in the ocean, Programma i metodika izucheniya biogeotsenozov vodnoi sredy (The Program and Methods for the Study of Biogeocenoses of the Aquatic Environment), Moscow: Nauka, 1970, pp. 66–84.

12. Koblents-Mishke, O.I. and Vedernikov, V.I., Primary production, Biologiya okeana, T. 2: Biologicheskaya produktivnost’ okeana (Ocean Biology, vol. 2: Biological Productivity of the Ocean), Moscow: Nauka, 1977, pp. 183–209.

13. Tishchenko, P.P., Zvalinsky, V.I., Tishchenko, P.Ya., and Semkin, P.Yu., The primary production of Amursky Bay (Sea of Japan) in the summer of 2008, Russ. J. Mar. Biol., 2017, vol. 43, no. 3, pp. 224–231.

14. Tishchenko, P.P., Tishchenko, P.Ya., Zvalinskii, V.I., Sergeev, A.F., The carbonate system of Amur Bay (Sea of Japan) under conditions of hypoxia, Oceanology, 2011, vol. 51, no. 2, pp. 235–246.

15. Shambarova, Yu.V., Stepochkin, I.E., Zakharkov, S.P., Study of the net primary production variability in the Japan Sea from satellite data using EOF-analysis, Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa, 2015, vol. 12, no. 1, pp. 80–92.

16. Banse, K. and Postel, J.R., On using pigment-normalized, light-saturated carbon uptake with satellite-derived pigment for estimating column photosynthesis, Global Biogeochem. Cycles., 2003, vol. 17, no. 3, p. 1079. doi 10.1029/2002GB002021

17. Behrenfeld, M.J. and Falkowski, P.G., Photosynthetic rates derived from satellite-based chlorophyll concentration, Limnol. Oceanogr., 1997a, vol. 42, no. 1, pp. 1–20.

18. Behrenfeld, M.J. and Falkowski, P.G., A consumer’s guide to phytoplankton primary productivity models, Limnol. Oceanogr., 1997b, vol. 42, no. 7, pp. 1479–1491.

19. Carr, M.-E., Friedrichs, M.A.M., Schmeltz, M., Aita, M.N., Antoine, D., Arrigo, K.R., Asanuma, I., Aumont, O., Barber, R., Behrenfeld, M., Bidigara, R., Buitenhuis, E.T., Campbell, J., Ciotti A., Dierssen, H., Dowell, M., Dunne, J., Esaias, W., Gentili, B., Gregg, W., Groom, S., Hoepffner, S., Ishizaka, J., Kameda, T., Le Quere, C., Lohrenz, S., Marra, J., Melin, F., Moore, K., Morel, A., Reddy, T.E., Ryan, J., Scardi, M., Smyth, T., Turpie, K., Tilstone, G., Waters, K., and Yamanaka, Y., A comparison of global estimates of marine primary production from ocean color, Deep Sea Res., Part II, 2006, vol. 53, pp. 741–770. doi 10.1016/j.dsr2.2006.01.028

20. Choi, J.K., Noh, J.H., Orlova, T., Park, M.-O., Lee, S.H., Park, Y.-J., Son, S., Stonik, I., and Choi, D.H., Phytoplankton and primary production, Oceanography of the East Sea (Japan Sea), Chang, K.-I., Zhang, C.-I., Park, C., et al.. eds., Cham, Switzerland: Springer Verlag, 2016, pp. 217–245. doi 10.1007/978-3-319-22720-7

21. Gordon, H.R. and McCluney, W.R., Estimation of the depth of sunlight penetration in the sea for remote sensing, Appl. Opt., 1975, vol. 14, no. 2, pp. 413–416. doi 10.1364/AO.14.000413

22. Hickman, A.E., Moore, C.M., Sharples, J., Lucas, M.I., Tilstone, G.H., Krivtsov, V., and Holligan, P.M., Primary production and nitrate uptake within the seasonal thermocline of a stratifed shelf sea, Mar. Ecol.: Prog. Ser., 2012, vol. 463, pp. 30–57.

23. Kim, S.-W., Saitoh, S.-I., Ishizaka, J., Isoda, Y., and Kishino, M., Temporal and spatial variability of phytoplankton pigment concentration in the Japan Sea derived from CZCS images, J. Oceanogr., 2000, vol. 56, no. 5, pp. 527–538.

24. Kirk, J.T., The nature and measurement of the light environment in the ocean, Primary Productivity and Biogeochemical Cycles in the Sea, New York: Plenum Press, 1992, pp. 9–29.

25. Morel, A., Huot, Y., Gentili, B., Werdell, P.J., Hooker, S.B., and Franz, B.A., Examining the consistency of products derived from various ocean color sensors in open ocean (Case 1) waters in the perspective of a multi-sensor approach, Remote Sens. Environ., 2007, vol. 111, no. 1, pp. 69–88. doi 10.1016/j.rse.2007.03.012

26. Murakami, H., Sasaoka, K., Hosoda, K., Fukushima, H., Toratani, M., Frouin, R., Mitchell, B.G., Kahru, M., Deschamps, P.Y., Clark, D., Flora, S., Kishino, M., Saitoh, S., Asanuma, I., Tanaka, A., Sasaki, H., Yokouchi, K., Kiyomoto, Y., Saito, H., Dupouy, C., Siripong, A., Matsumura, S., and Ishizaka, J., Validation of ADEOS-II GLI ocean color products using in-situ observations, J. Oceanogr., 2006, vol. 62, no. 3, pp. 373–393.

27. Painter, S.C., Sanders, R., Poulton, A.J., Woodward, E.M.S., Lucas, M.I., and Chamberlain, K., Nitrate uptake at photic zone depths is not important for export in the subtropical ocean, Global Biogeochem. Cycles, 2007, vol. 21, no. 4, art. ID GB4005.doi 1029/2006GB002807

28. Park, K.-A., Ullman, D.S., Kim, K., Chung, J.Y., and Kim, K.-R., Spatial and temporal variability of satellite-observed Subpolar Front in the East/Japan Sea, Deep-Sea Res., Part I, 2007, vol. 54, no. 4. pp. 453–470. doi 10.1016/j.dsr.2006.12.010

29. Sverdrup, H.U., On conditions for the vernal blooming of phytoplankton, J. Cons. Perm. Int. Explor. Mer., 1953, vol. 18, pp. 287–295.

30. Talling, J.F., Photosynthetic characteristics of some freshwater plankton diatoms in relation to underwater radiation, New Phytol., 1957, vol. 56, no. 1, pp. 29–50. doi 10.1111/j.1469-8137.1957.tb07447.x

31. Yamada, K., Ishizaka, J., and Nagata, H., Spatial and temporal variability of satellite estimated primary production in the Japan Sea from 1998 to 2002, J. Oceanogr., 2005, vol. 61, no. 5, pp. 857–869.

32. Yamada, K., Ishizaka, J., Yoo, S., Kim, H., and Chiba, S., Seasonal and interannual variability of sea surface chlorophyll a concentration in the Japan/East Sea (JES), Prog. Oceanogr., 2004, vol. 61, no. 2–4, pp. 193–211. doi 10.1016/j.pocean.2004.06.001

33. Zhao, T.L., Gong, S.L., Zhang, X.Y., and McKendry, I.G., Modeled size-segregated wet and dry deposition budgets of soil dust aerosol during ACE-Asia 2001: Implications for trans-Pacifc transport, J. Geophys. Res., 2003, vol. 108, no. D23, art. ID 8665. doi 10.1029/2002JD003363

34. Metody gidrokhimicheskikh issledovanii osnovnykh biogennykh elementov (Methods of Hydrochemical Studies of Main Nutrients), Moscow: VNIRO, 1988.

35. Sovremennye metody gidrokhimicheskikh issledovanii okeana (Modern Methods of Hydrochemical Studies of the Ocean), Moscow: P.P. Shirshov Inst. Okeanol., Ross. Akad. Nauk, 1992.

36. Zakharkov, S.P., Hydrobiological team report, Nauchnyi otchet ob ekspeditsii TOI DVO RAN na NIS “Akademik M.A. Lavrent’ev”, reis no. 33 (Research Report on the Expedition of V.I. Il’ichev Pacifc Oceanological Institute, Russian Academy of Sciences, Aboard R/V Akademik M.A. Lavrentyev, Cruise no. 33), Vladivostok: V.I. Il’ichev Tikhookean. Okeanol. Inst., Ross. Akad. Nauk, 2004, pp. 40–47.


Review

For citations:


Zvalinsky V.I., Lobanova P.V., Tishchenko P.Ya., Lobanov V.B. Evaluation of primary production in the northeastern Japan Sea on the base of shipboard and satellite data. Izvestiya TINRO. 2018;195(4):184-200. (In Russ.) https://doi.org/10.26428/1606-9919-2018-195-184-200

Views: 593


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1606-9919 (Print)
ISSN 2658-5510 (Online)