Adaptive zone, Petersen-type communities, geographical range and ecological niche. Report 1. Defnitions and relations of the concepts
https://doi.org/10.26428/1606-9919-2018-195-3-27
Abstract
Defnition of the term adaptive zone (AZ) is amended. The Petersen-type communities (PC) are not communities in every sense of the word. They are just the areas within which the same species prevail in their abundance. An accounting gear used for identifcation of PC must be suited for catching of the most abundant species. All dominant species must be represented in the lists, regardless of whether they are seasonal or permanent components of population. Only one factor (either number of individuals or biomass) has to be used for species abundance comparison. For recognition and naming of several PC, the same number of the dominant and subdominant species should be used. Under the abovementioned conditions, if this number is equal to 1 — this method selects nothing more than AZ, which are the elementary PC. The fundamental ecological niche (EN) of a species includes its realized AZ — the real space actually coincides with its geographical range (GR). The GR is situated inside the EN, and the realized AZ is a part of GR. The GR (and sometimes EN) of different species can be partially or fully overlapped, but their AZ cannot be overlapped. Each AZ is compliant with a certain species, but not each species is compliant with AZ. AZ are available to the most dominant species and the size of AZ may serve as one of simple measures of the species capability for survival or success in their struggle for existence, and corresponds to portion of total ecological capacity of the environment used by the species. The interiors of the species GR may contain from zero to several AZ, both of this and other species. The interiors of the species AZ also contain parts of GR of other species having similar requirements to the environment (prey, predators, parasites, competitors, symbionts, and other biotic habitat factors). Potential AZ may be located both inside and outside the real GR of a species, but only within its fundamental GR. The potential AZ can be realized by changing the environmental conditions or passing through existing barriers of distribution. Transformation of potential AZ into a realized one can cause an ecological catastrophe if it breaks the existing balance and leads to signifcant redistribution of the shares of total ecological capacity available for species. But even signifcant changes in the ratios of GR and AZ of species will not cause catastrophic consequences in conditions of abundant vital resources, if ecological capacity of the environment is not flled and packing density of EN is low. Changes in the environment, as well as ontogenetic, migratory, succession and evolutionary processes cause changes in ratio of abundance between different species, including mass ones, that leads to variability of their AZ. Number, sizes, shapes, location of the AZ change progressively, both on the actual and geological time scales, and cyclically in accordance with circadian, seasonal and perennial rhythms. Therefore AZ, as well as GR, EN and communities, should be studied in dynamics and in connection with changes in the environment. Defnitions of the main terms are presented in a Supplement.
About the Author
I. V. VolvenkoRussian Federation
Volvenko Igor V., D.Sc., principal researcher
References
1. Alimov, A.F., Elementy teorii funktsionirovaniya vodnykh ekosistem (Elements of the Theory of Functioning of Aquatic Ecosystems), St. Petersburg: Nauka, 2000.
2. Bekker, V.E., Miktofovye ryby Mirovogo okeana (Myctophid Fishes of the World Ocean), Moscow: Nauka, 1983.
3. Beklemishev, V.N., On the classifcation of biocenological (symphysiological) relationships, Byull. Mosk. O-va. Ispyt. Prir., Otd. Biol., 1951, vol. 56, no. 5, pp. 3–30.
4. Biologicheskii entsiklopedicheskii slovar’ (Biological encyclopedic dictionary), Gilyarov, M.S., ed., Moscow: Sovetskaya Entsiklopediya, 1986.
5. Bol’shaya rossiiskaya entsiklopediya (Great Russian Encyclopedia), Osipov, Yu.S., 35 vols., Moscow: Rossiiskaya Entsiklopediya, 2004–2014.
6. Bol’shaya sovetskaya entsiklopediya (Great Soviet Encyclopedia), Prokhorov, A.M., 30 vols., Moscow: Sovetskaya Entsiklopediya, 3rd ed., 1969–1978.
7. Brotskaya, V.A. and Zenkevich, L.A., Quantitative survey of the bottom fauna in the Barents Sea, Tr. Vses. Nauchno–Issled. Inst. Rybn. Khoz. Okeanogr., 1939, vol. 4, pp. 5–126.
8. Buyanova, L.Yu., Termin kak edinitsa logosa (Term as a Unit Logos), Krasnodar: Kuban. Gos. Univ., 2002.
9. Vereshchagin, G.O., On the issue of biocenoses and stations in waterbodies, Russ. Gidrobiol. Zh., 1923, vol. 2, no. 3–4, pp. 53–63.
10. Vinogradov, M.E., Vertikal’noe raspredelenie okeanicheskogo zooplanktona (Vertical Distribution of Oceanic Zooplankton), Moscow: Nauka, 1968.
11. Volvenko, I.V., General principles of spatial-temporal variability of integral parameters for pelagic macrofauna in the North-West Pacifc, Izv. Tikhookean. Nauchno–Issled. Inst. Rybn. Khoz. Okeanogr., 2009, vol. 159, pp. 43–69.
12. Volterra, V., Matematicheskaya teoriya bor’by za sushchestvovanie (The Mathematical Theory of Struggle for Existence), Moscow: Nauka, 1976. (Russian translation)
13. Vorobyev, V.P., Bentos Azovskogo morya (Benthos of the Sea of Azov), Simferopol: Krymizdat, 1949.
14. Geptner, V.G., Obshchaya zoogeografya (General Zoogeography), Moscow: Gos. Izd. Biol. Med. Lit., 1936.
15. Golikov, A.N., Skarlato, O.A., and Tabunkov, V.D., Biotsenozy melkovodii yuzhnogo Sakhalina (prilozhenie k stat’e) (Biocenoses of Shallow Waters of Southern Sakhalin (Appendix to the Article)), Leningrad: Nauka, 1985.
16. Grinev-Grinevich, S.V., Terminovedenie (Terminology), Moscow: Akademiya, 2008.
17. Davydov, I.V., On the nature of long-term variations in the abundance of fsh and the possibility of their prediction, in Dinamika chislennosti promyslovykh zhivotnykh dal’nevostochnykh morei (Dynamics of Abundance of Commercial Animals in the Far Eastern Seas), Vladivostok: TINRO, 1986, pp. 5–16.
18. Danilenko, V.P., Russkaya terminologiya: opyt lingvisticheskogo opisaniya (Russian Terminology: Experience of Linguistic Description), Moscow: Nauka, 1977.
19. Dedyu, I.I., Ekologicheskii entsiklopedicheskii slovar’ (Ecological Encyclopedic Dictionary), Kishinev: Gl. Red. Mold. Sov. Entsikl., 1989.
20. Giller, P.S., Community Structure and the Niche, London: Chapman and Hall, 1984.
21. Zhadin, V.V., General issues, basic concepts, and objectives of the freshwater hydrobiology, in Zhizn’ presnykh vod SSSR (Life in Fresh Waters of the USSR), Moscow: Akad. Nauk. SSSR, 1950, vol. 3, pp. 7–112.
22. Zagorovskaya, O.V. and Dan’kova, T.N., Termin i terminologiya (Term and Terminology), Voronezh: Nauchnaya Kniga, 2011.
23. Zenkevich, L.A., Fauna i biologicheskaya produktivnost’ morya. T. 1: Mirovoi okean (Fauna and Biological Capacity of the Sea, vol. 1: World Ocean), Moscow: Sovetskaya Nauka, 1951.
24. Zenkevich, L.A., Fauna i biologicheskaya produktivnost’ morya T. 2: Morya SSSR (Fauna and Biological Capacity of the Sea, vol. 2: Seas of the USSR), Moscow: Sovetskaya Nauka, 1947.
25. Zernov, S.A., K voprosu ob izuchenii zhizni Chernogo morya (On the Issue of Studying the Life of the Black Sea), Zap. Imp. Akad. Nauk Fiz.-Mat. Otd., 1913, vol. 32, no. 1.
26. Karedin, Ye.P., Resources of the northern Pacifc mezopelagic fshes, Izv. Tikhookean. Nauchno– Issled. Inst. Rybn. Khoz. Okeanogr., 1998, vol. 124, pp. 391–416.
27. Karzinkin, G.S., An attempt of practical resolution of the “biocenosis” concept. Part 1: The dependence of the characteristics of biocenosis on general environmental conditions, Russ. Zool. Zh., 1926, vol. 6, no. 4, pp. 97–133.
28. Karzinkin, G.S., An attempt of practical resolution of the “biocenosis” concept. Part 1: The dependence of the characteristics of biocenosis on general environmental conditions, Russ. Zool. Zh., 1927, vol. 7, no. 1, pp. 3–33.
29. Karzinkin, G.S., An attempt of practical resolution of the “biocenosis” concept. Part 2: The effects of various factors on biocenosis, Russ. Zool. Zh., 1927, vol. 7, no. 2, pp. 34–76.
30. Kashkarov, D.N., Osnovy ekologii zhivotnykh (Basics of Animal Ecology), Moscow: Medgiz, 1938.
31. Klyashtorin, L.B. and Lyubushin, A.A., Tsiklicheskiye izmeneniya klimata i ryboproduktivnosti (Cyclic Changes in Climate and Fish Capacity), Moscow: VNIRO, 2005.
32. Kuznetsov, A.P., Fauna donnykh bespozvonochnykh prikamchatskikh vod Tikhogo okeana i severnykh Kuril’skikh ostrovov (The Fauna of Benthic Invertebrates in the Pacifc Waters off Kamchatka and the Northern Kuril Islands), Moscow: Akad. Nauk SSSR, 1963.
33. Kulikova, I.S. and Salmina, D.V., On the issue of the terminological status of the word combination “basic term”, Nauchn. Vestn. Voronezh. Gos. Arkhit.-Stroit. Univ., 2016, no. 2(21), pp. 20–31.
34. Lotte, D.S., Osnovy postroeniya nauchno-tekhnicheskoi terminologii: voprosy teorii i metodiki (Fundamentals of Construction of Scientifc and Technical Terminology: Issues of Theory and Methodology), Moscow: Akad. Nauk SSSR, 1961.
35. Markov, A.V. and Naimark, E.B., Kolichestvennye zakonomernosti makroevolyutsii. Opyt primeneniya sistemnogo podkhoda k analizu razvitiya nadvidovykh taksonov (Quantitative Patterns of Macroevolution: Experience of Applying a Systemic Approach to the Analysis of the Development of Superspecies Taxa), Moscow: Borysyak Paleontol. Inst., Ross. Akad. Nauk, 1998.
36. Mirkin, B.M. and Rozenberg, G.S., Tolkovyi slovar’ sovremennoi ftotsenologii (Explanatory Dictionary of Modern Phytocenology), Moscow: Nauka, 1983.
37. Magurran, A.E., Ecological Diversity and Its Measurement, London: Croom Helm, 1988.
38. Naumov, N.P., Ekologiya zhivotnykh (Animal Ecology), Moscow: Vysshaya Shkola, 1963, 2nd ed.
39. Neyman, A.A., On the composition regularities of marine benthal biocoenoses, Zool. Zh., 1963, vol. 42, no. 4, pp. 618–621.
40. Nesis, K.N., General environmental concepts applied to marine communities. Community as a continuum, in Biologiya okeana. T. 2: Biologicheskaya produktivnost’ okeana (Biology of the Ocean, vol. 2: Biological Capacity of the Ocean), Moscow: Nauka, 1977, pp. 5–13.
41. Nesis, K.N., Okeanicheskiye golovonogiye molluski: rasprostraneniye, zhiznennye formy, evolutsiya (Oceanic Cephalopods: Distribution, Life Forms, Evolution), Moscow: Nauka, 1985.
42. Odum, E.P., Ecology, New York: Holt, Rinehart and Winston, 1963.
43. Parin, N.V., Ikhtiofauna okeanskoi epipelagialy (Ichthyofauna of the Ocean Epipelagic Zone), Moscow: Nauka, 1968.
44. Parin, N.V., Ryby otkrytogo okeana (Fishes of the Open Ocean), Moscow: Nauka, 1988.
45. Ramade, F., Éléments d’Ecologie Appliquée, New-York: McGraw-Hill, 1974.
46. Rezvoi, P.K., To the defnition of the concept “biocenosis”, Russ. Gidrobiol. Zh., 1924, vol. 3, nos. 8–10, pp. 204–209.
47. Reimers, N.F., Ekologiya (teorii, zakony, pravila, printsipy i gipotezy) (Ecology (Theories, Laws, Rules, Principles, and Hypotheses)), Moscow: Rossiya molodaya, 1994.
48. Reformatsky, A.A., Thoughts on terminology, in Sovremennye problemy russkoi terminologii (Modern Problems of Russian Terminology), Moscow: Nauka, 1986, pp. 163–198.
49. Severtsov, A.S.,Napravlennost’ evolyutsii(The Directionality of the Evolution), Moscow: MGU, 1990.
50. Simpson, G.G., Tempo and Mode in Evolution, Moscow: State Publishing House, 1948.
51. Sukachev, V.N., Principal problems in modern biocenology, Zh. Obshch. Biol., 1965, vol. 26, no. 3, pp. 249–260.
52. Superanskaya, A.V., Podol’skaya, N.V., and Vasil’eva, N.V., Obshchaya terminologiya: voprosy teorii (General Terminology: Theoretical Issues), Moscow: LKI, 2007.
53. Sukhanov, V.V., Petropavlovsky, B.S., and Chavtur, N.A., Algorithmic zoning of wood vegetation of the Sikhote-Alin reserve, Biol. Nauki, 1992, no. 10, pp. 128–138.
54. Sukhanov, V.V., Petropavlovsky, B.S., and Chavtur, N.A., Struktura rastitel’nykh soobshchestv Sikhote-Alinskogo zapovednika (The Structure of the Plant Communities of the Sikhote-Alin Nature Reserve), Vladivostok: Dal’nauka, 1994.
55. Sukhanov, V.V., Shuntov, V.P., and Lapko, V.V., The method of computer selection of biocenotic complexes exemplifed by zoning of the Sea of Okhotsk, Mater. 7 s’ezda gidrobiol. o-va Ross. Akad. Nauk. (Proc. 7th Meet. Hydrobiol. Soc. Russ. Acad. Sci.), Kazan: Poligraf, 1996, vol. 1, pp. 160–162.
56. Whittaker, R.H., Communities and Ecosystems, New York: Macmillan, 1975, 2nd ed.
57. Filatova, Z.A., Quantitative assessment of the benthic fauna in the southwestern Barents Sea, Tr. Polyrn. Nauchno–Issled. Inst. Rybn. Khoz. Okeanogr., 1938, no. 2, pp. 3–58.
58. Filipyev, I.N., Experience in precise defnition of basic concepts concerning the distribution of benthic aquatic animals, Russ. Gidrobiol. Zh., 1924, vol. 3, no. 1–2, pp. 1–7.
59. Friederichs, K., Die Grundfragen und Gesetzmäßigkeiten der land-und forstwirtschaftlichen Zoologie insbesondere der Entomologie, Berlin: Paul Parey, 1930.
60. Khailov, K.M. and Popov, A.E., The concept of living mass as a regulator of functions of aquatic organisms, Ekol. Morya, 1983, no. 15, pp. 3–16.
61. Khlebosolov, E.I., The theory of ecological niche: History and current state, Russ. Ornitol. Zh., 2002, no 203, pp. 1019–1037.
62. Shvarts, S.S., On the history of the basic concepts in modern ecology, Ocherki po istorii ekologii (Essays on the History of Ecology), Moscow: Nauka, 1970, pp. 89–105.
63. Shelov, S.D., Termin. Terminologichnost’. Terminologicheskie opredeleniya (Term. Terminology. Terminological Defnitions), St. Petersburg: S.-Peterb. Gos. Univ., 2003.
64. Shuntov, V.P., Biologiya dal’nevostochnykh morei Rossii (Biology of the Far Eastern Seas of Russia), Vladivostok: TINRO-Tsentr, 2016, vol. 2.
65. Shuntov, V.P., Outcomes of the study of macroecosystems in the Far Eastern seas of Russia: objectives, results, doubts, Vestn. Dal’nevost. Otd. Ross. Akad. Nauk, 2000, no. 1, pp. 19–29.
66. Shuntov, V.P., The present state of knowledge of long–term cyclical fluctuations in the abundance of fsh in seas of the Far East, Sov. J. Mar. Biol., 1986, vol. 12, no. 3, pp. 127–137.
67. Shuntov, V.P. and Temnykh, O.S., Tikhookeanskie lososi v morskikh i okeanicheskikh ekosistemakh (Pacifc Salmon in Marine and Ocean Ecosystems), Vladivostok: TINRO-Tsentr, 2011, vol. 2.
68. Barash, D.P., Concentration of dominance and adaptive zones, Oikos, 1973, vol. 24, no. 2, pp. 328–330. doi 10.2307/3543892
69. Beamish, R.J., Leask, K.D., Ivanov, O.A., Balanov, A.A., Orlov, A.M., and Sinclair, B., The ecology, distribution, and abundance of midwater fshes of the Subarctic Pacifc gyres, Prog. Oceanogr., 1999, vol. 43, no. 2, pp. 399–442. doi 10.1016/S0079-6611(99)00017-8
70. Bodenheimer, F.S., Animal Ecology To-Day, Den Haag: Uitgev. Dr. W. Junk, 1958.
71. Brown, J.H., On the relationship between abundance and distribution of species, Am. Nat., 1984, vol. 124, no. 2, pp. 255–279.
72. Clements, F.E., Plant Succession: An Analysis of the Development of Vegetation, Wash.: Carnegie Inst. Wash., 1916.
73. Clements, F.E., Research Methods in Ecology, Lincoln, Nebr.: Univ. Publ. Co., 1905.
74. Clements, F.E. and Shelford, V.E., Bio-Ecology, New York: Wiley, 1939.
75. Curtis, J.T. and McIntosh, R.P., An upland forest continuum in the prairie-forest border region of Wisconsin, Ecology, 1951, vol. 32, no. 3, pp. 476–496.
76. Davis, F.M., Quantitative studies on the fauna of the sea bottom. No. 1. Preliminary investigation of the Dogger Bank, M.A.F. Fish. Invest., Ser. II, 1923, vol. 6, no. 2.
77. Elton, C.S., Animal Ecology, New York: Macmillan Co., 1927.
78. Emerson, A.E., Social coordination and superorganism, Am. Midl. Nat., 1939, vol. 21, no. 1, pp. 182–209.
79. Ford, E., Animal communities of the level sea-bottom in the waters adjacent to Plymouth, J. Mar. Biol. Ass. Plymouth, 1923, vol. 13, no. 1, pp. 164–224.
80. Gaston, K.J., The Structure and Dynamics of Geographic Ranges, Oxford: Oxford Univ. Press, 2003.
81. Gaston, K.J. and Blackburn, T.M., A critique for macroecology, Oikos, 1999, vol. 84, no. 3, pp. 353–368. doi 10.2307/3546417
82. Gaston, K.J., Blackburn, T.M., Greenwood, J.J.D., Gregory, R.D., Quinn, R.M., and Lawton, J.H., Abundance-occupancy relationships, J. Appl. Ecol., 2000, vol. 37, suppl. 1, pp. 39–59.
83. Gause, G.F., The Struggle for Existence, Baltimore: Williams and Wilkins Co., 1934.
84. Gjøsaeter, J. and Kawaguchi, K., A review of the world resources of mesopelagic fsh, FAO Fish. Tech. Pap., 1980, vol. 193.
85. Gleason, H.A., The individualistic concept of the plant association, Bull. Torrey Bot. Club, 1926, vol. 53, no. 1, pp. 7–26.
86. Gleason, H.A., The individualistic concept of the plant association, Am. Midl. Nat., 1939, vol. 21, no. 1, pp. 92–110.
87. Goodall, D.W., The continuum and the individualistic association, Vegetatio, 1963, vol. 11, no. 5/6, pp. 297–316.
88. Grinnell, J., The niche-relationships of the California thrasher, Auk, 1917, vol. 34, no. 4, pp. 427–433.
89. Hardin, G., The competitive exclusion principle, Science, 1960, vol. 131, pp. 1292–1297.
90. Harvey, P.H. and Godfray, H.C.J., How species divide resources, Am. Nat., 1987, vol. 129, no. 2, pp. 318–320.
91. Holt, A.R., Gaston, K.J., and He, F., Occupancy-abundance relationships and spatial distribution: a review, Basic Appl. Ecol., 2002, vol. 3, no. 1, pp. 1–13.
92. Holt, R.D., Lawton, J.H., Gaston, K.J., and Blackburn, T.M., On the relationship between range size and local abundance: back to basics, Oikos, 1997, vol. 78, no. 1, pp. 183–190.
93. Hunt, O.D., The food of the bottom fauna of the Plymouth fshing grounds, J. Mar. Biol. Assoc. U. K., 1925, vol. 13, no. 3, pp. 560–599.
94. Hutchinson, G.E., Concluding remarks, Cold Spring Harbor Symp. Quant. Biol., 1957, vol. 22, pp. 415–427.
95. Hutchinson, G.E., The niche: an abstractly inhabited hypervolume, The Ecological Theatre and the Evolutionary Play, New Haven, Conn.: Yale Univ. Press, 1965, pp. 26–78.
96. Invasive Alien Species: A Toolkit of Best Prevention and Management Practices, Wittenberg, R. and Cock, M.J.W., eds., Wallingford, U.K.: CABI, 2001.
97. Invasive Species in a Changing World, Mooney, H.A. and Hobbs, R.J., eds., Washington: Island Press, 2000.
98. Irigoien, X., Klevjer, T.A., Rostad, A., Martinez, U., Boyra, G., Acuna, J.L., Bode, A., Echevarria, F., Gonzales-Gordillo, J.I., Hernandez-Leon, S., Agusti-Requena, S., Aksnes, D.L., Duarte Quesada, C., and Kaartvedt, S., Large mesopelagic fshes biomass and trophic effciency in the open ocean, Nat. Commun., 2014, vol. 5, pp. 1–10. doi 10.1038/ncomms4271
99. Lowe, S., Browne, M., Boudjelas, S., and De Poorter, M., 100 of the World’s Worst Invasive Alien Species: A Selection from the Global Invasive Species Database, Auckland: IUCN-ISSG, 2000.
100. MacArthur, R.H. and Wilson, E.O., The Theory of Island Biogeography, Princeton, N.J.: Univ. Press, 2001.
101. McDougall, W.B., Plant Ecology, Philadelphia: Lea and Febiger, 1927.
102. McIntosh, R.P., The continuum concept of vegetation, Bot. Rev., 1967, vol. 33, no. 2, pp. 130–187.
103. McNeely, J.A. (ed.), The Great Reshuffling: Human Dimensions of Invasive Alien Species, IUCN Gland, Switzerland and Cambridge, UK, 2001.
104. McNeely, J.A., Mooney, H.A., Neville, L.E., Schei, P., Waage, J.K. (eds.), A global strategy on invasive alien species, IUCN Gland, Switzerland and Cambridge, UK, 2001.
105. Mitter, C., Farrell, B., and Wiegmann, B., The phylogenetic study of adaptive zones: has phytophagy promoted insect diversifcation?, Am. Nat., 1988, vol. 132, no. 1, pp. 107–128.
106. Mobius, K., Die Auster und die Austernwirth, schaft, Berlin: Wiegand, Hempeldt and Parey, 1877.
107. Odum, E.P., Energy flow in ecosystems: a historical review, Am. Zool., 1968, vol. 8, no. 1, pp. 11–18.
108. Petersen, C.G.J., A brief survey of the animal communities in Danish waters, Am. J. Sci., Ser. 5, 1924, vol. 7, pp. 343–354.
109. Petersen, C.G.J., On the animal communities of the sea bottom in the Skagerrak, the Christiania Fjord and the Danish waters, Rep. Dan. Biol. Stn., 1915, vol. 23.
110. Petersen, C.G.J., The sea bottom and its production of fsh-food. A survey of the work done in connection with the valuation of the Danish waters from 1883–1917, Rep. Dan. Biol. Stn., 1918, vol. 25.
111. Petersen, C.G.J., Valuation of the sea. II. The animal communities of the sea bottom and their importance for marine zoogeography, Rep. Dan. Biol. Stn., 1913, vol. 21.
112. Petersen, C.G.J. and Boysen-Jensen, P., Valuation of the sea. I. Animal life of the sea bottom, its food and quantity, Rep. Dan. Biol. Stn., 1911, vol. 20.
113. Polly, P.D., Adaptive zones and the pinniped ankle: a three-dimensional quantitative analysis of carnivoran tarsal evolution, Mammalian Evolutionary Morphology: A Tribute to Frederick S. Szalay, Springer: Dordrecht, 2008, pp. 167–196. doi 10.1007/978-1-4020-6997-0_9
114. Ravera, O., Considerations on some ecological principles, Trends Ecol. Res. 1980s, NATO Conf. Ser., 1984, vol. 7, pp. 145–162.
115. Shine, C., Williams, N., and Gündling, L., A Guide to Designing Legal and Institutional Frameworks on Alien Invasive Species, Gland, Switzerland: IUCN, 2000.
116. Shuntov, V.P., Review of research into macroecosystems of the Far Eastern seas: results, objectives, doubts, PICES Ann. Rep. 8th Meet., Sidney, 2000, pp. 15–23.
117. Simpson, G.G., Tempo and Mode in Evolution, New York: Columbia Univ. Press, 1944.
118. Stephen, A.C., Preliminary survey of the Scottish waters of the North Sea by the Petersen grab, Sci. Invest. Fish. Scot., 1922, no. 3, pp. 1–21.
119. Stephenson, W., Williams, W.T., and Cook, S.D., Computer analyses of Petersen’s original data on bottom communities, Ecol. Monogr., 1972, vol. 42, no. 4, pp. 387–415.
120. Tansley, A.G., The use and abuse of vegetational concepts and terms, Ecology, 1935, vol. 16, pp. 284–307.
121. The Economics of Biological Invasions, Perrings, C., Williamson, M.H., Dalmazzone, S., eds., Cheltenham, Northampton: Edward Elgar Publ., 2000.
122. Thienemann, A., Der See als Lebenseinheit, Die Naturwissenschaften, 1925, vol. 13, no. 27, pp. 589–600. doi 10.1007/BF01578192
123. Thorson, G., Bottom communities (sublittoral of shallow shelf), Treatise Mar. Ecol. Paleoecol., vol. 1: Ecol. Mem. Geol. Soc. Am., 1957, vol. 67, pp. 461–534.
124. Thorson G. Contributions to the animal ecology of the Scoresby Sound fjord complex (east Greenland), Medd. Groenl., 1934, vol. 100, no. 3, pp. 1–69.
125. Thorson, G., Investigations on shallow water animal communities in the Franz Joseph Fjord (east Greenland) and adjacent waters, Medd. Groenl., 1933, vol. 100, no. 2, pp. 1–70.
126. Thorson, G., Modern aspects of marine level-bottom animal communities, J. Mar. Res., 1955, vol. 14, no. 4, pp. 387–397.
127. Udvardy, M.D.F., Dynamic Zoogeography with Special Reference to Land Animals, New York: Van Nostrand Reinhold, 1969.
128. Underwood, A.J., What is a community? in Patterns and Processes in the History of Life, Dahlem Workshop Rep., 1986, vol. 36, pp. 351–367.
129. VanValen, L., Adaptive zones and the orders of mammals, Evolution, 1971, vol. 25, no. 2, pp. 420–428.
130. Whittaker, R.H., A criticism of the plant association and climatic climax concepts, Northwest Sci., 1951, vol. 25, pp. 17–31.
Review
For citations:
Volvenko I.V. Adaptive zone, Petersen-type communities, geographical range and ecological niche. Report 1. Defnitions and relations of the concepts. Izvestiya TINRO. 2018;195(4):3-27. (In Russ.) https://doi.org/10.26428/1606-9919-2018-195-3-27