Preview

Izvestiya TINRO

Advanced search

Standardization of CPUE for walleye pollock in the Okhotsk Sea with inclusion of some environmental factors

https://doi.org/10.26428/1606-9919-2020-200-819-836

Abstract

Catch of walleye pollock by Russia is the highest in the northern Okhotsk Sea where on average 0.94 million metric tons were caught annually in the period between 1962 and 2017, or around 24 % of the total yield of Russian fishery. The total stock and spawning stock of pollock grow there since 2002, though the catch per unit effort (CPUE) has significantly decreased in the beginning of 2018 despite expected high levels of both total and spawning stocks. The sea surface temperature, ice cover and storms frequency were examined as possible reasons of low fishing efficiency in 2018. For this purpose, the generalized linear models (GLM) and generalized additive models (GAM) of catch dynamics are compared. GAM with addition of temperature and storms factors has the lowest Schwarz’s Bayesian criterion and the highest explained deviance (61.6 %). Efficiency of fishing gears has nonlinear relationship with the towing time. CPUE has hypersensitivity to the stock biomass presented as the power dependence (γ = 0.94, r = 0.923). Standardized CPUE is recommended for using in the final GAM for the pollock stock assessment in the northern Okhotsk Sea, hypersensitivity of CPUE should be estimated and corrected if necessary.

About the Authors

V. V. Kulik
Pacific branch of VNIRO (TINRO)
Russian Federation

Kulik Vladimir V., Ph.D., head of division

4, Shevchenko Alley, Vladivostok, 690091



A. I. Varkentin
Kamchatka branch of VNIRO (KamchatNIRO)
Russian Federation

Varkentin Aleksander I., Ph.D., deputy head of branch

18, Naberezhnaya Str., Petropavlovsk-Kamchatsky, 683000



O. I. Ilyin
Kamchatka branch of VNIRO (KamchatNIRO)
Russian Federation

Ilyin Oleg I., Ph.D., leading researcher

18, Naberezhnaya Str., Petropavlovsk-Kamchatsky, 683000 



References

1. Antonovich, K.M., Ispol’zovanie sputnikovykh radionavigatsionnykh sistem v geodezii (The use of satellite radio navigation systems in geodesy), Moscow: Kartgeotsentr, 2005, vol. 1.

2. Babayan, V.K., Bobyrev, A.E., Bulgakova, T.I., Vasiliev, D.A., Ilyin, O.I., Kovalev, Yu.A., Mikhailov, A.I., Mikheev, A.A., Petukhova, N.G., Safaraliev, I.A., Chetyrkin, A.A., and Sheremetyev, A.D., Metodicheskiye rekomendatsii po otsenke zapasov prioritetnykh vidov vodnykh biologicheskikh resursov (Guidelines for assessing stocks of priority types of aquatic biological resources), Moscow: VNIRO, 2018.

3. Varkentin, A.I. and Kolomeytsev, V.V., Some results of the pollack fishing season of Sea of Okhotsk in 2018, Rybn. Khoz., 2018, no. 5, pp. 40–51.

4. Varkentin, A.I. and Sergeeva, N.P., Walleye pollock (Theragra chalcogramma) fishery in the waters adjacent to Kamchatka peninsula in 2003–2015, Issled. Vodn. Biol. Resur. Kamchatki Sev.-Zapadn. Chasti Tikhogo Okeana, 2017, iss. 47, pp. 5–45. doi 10.15853/2072-8212.2017.47.5-45

5. Zverkova, L.M., Mintay. Biologiya, sostoyaniye zapasov (Pollock Biology, stock status), Vladivostok: TINRO-tsentr, 2003.

6. Ilyin, O.I., Varkentin, A.I., and Smirnov, A.V., On one model approach to assessment of state for the stock of walleye pollock Theragra chalcogramma in the northern Okhotsk Sea, Izv. Tikhookean. Nauchno-Issled. Inst. Rybn. Khoz. Okeanogr., 2016, vol. 186, pp. 107–117. doi 10.26428/1606-9919-2016-186-107-117

7. lyin, O.I., Sergeeva, N.P., and Varkentin, A.I., Estimation of reserves and forecasting of TAC of East Kamchatka pollock (Theragra chalcogramma) based on a precautionary approach, Tr. Vses. Nauchno-Issled. Inst. Rybn. Khoz. Okeanogr., 2014, vol. 151, pp. 62–74.

8. Kulik, V.V., Prants, S.V., Budyansky, M.V., Uleysky, M.Y., Fayman, P.A., Glebov, I.I., Glebova, S.Y., and Novikov, R.N., Relationship of the greenland halibut stocks in the Okhotsk sea with environmental factors, Izv. Tikhookean. Nauchno-Issled. Inst. Rybn. Khoz. Okeanogr., 2020, vol. 200, iss. 1, pp. 58–81. doi 10.26428/1606-9919-2020-200-58-81

9. Pyrkov, V.N., Solodilov, A.V., and Degaj, A.Yu., Development and implementation of new satellite techniques in the fishery monitoring system, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2015, vol. 12, no. 5, pp. 251–262.

10. Savenkov, V.V., Shpigalskaya, N.Yu., Varkentin, A.I., Pilganchuk, O.A., Muravskaya, U.O., Denisenko, A.D., and Saravanskii, O.N., Differentiation of walleye pollock (Theragra chalcogramma) of the Sea of Okhotsk based on the microsatellite loci, Issled. Vodn. Biol. Resur. Kamchatki Sev.-Zapadn. Chasti Tikhogo Okeana, 2018, iss. 48, pp. 5–18. doi 10.15853/2072-8212.2018.48.5-18

11. Savenkov, V.V., Shpigalskaya, N.Yu., Varkentin, A.I., Pilganchuk, O.A., Muravskaya, U.O., and Saravanskii, O.N., Variety of microsatellite loci in samples of walleye pollock from spawning aggregations in the Okhotsk and Bering Seas and in Pacific Ocean waters, adjacent to the North Kurile Islands, Issled. Vodn. Biol. Resur. Kamchatki Sev.-Zapadn. Chasti Tikhogo Okeana, 2014, iss. 34, pp. 72–80.

12. Savenkov, V.V., Shpigal’skaya, N.Yu., Varkentin, A.I., Pil’ganchuk, O.A., Kustova, A.S., and Saravanskii, O.N., Polymorphism of population-genetic markers of pollock in the northern part of the Sea of Okhotsk, in Mater. Vseross. nauchn. konf. posvyashch. 80-letnemu yubileyu FGUP “KamchatNIRO” “Vodnye biologicheskie resursy severnoi chasti Tikhogo okeana: sostoyanie, monitoring, upravlenie” (Proc. All-Russ. Sci. Conf. Commem. 80th Aniv. FGUP KamchatNIRO “Aquatic Biological Resources of the Northern Pacific Ocean: Status, Monitoring, and Management”), Petropavlovsk-Kamchatsky: KamchatNIRO, 2012, pp. 439–447.

13. Shuntov, V.P., Volkov, A.F., Temnykh, O.S., and Dulepova, E.P., Mintai v ekosistemakh dal’nevostochnykh morei (Walleye Pollock in Ecosystems of the Far Eastern Seas), Vladivostok: TINRO, 1993.

14. Bannerot, S.P. and Austin, C.B., Using Frequency Distributions of Catch per Unit Effort to Measure Fish-Stock Abundance, Trans. Am. Fish. Soc., 1983, vol. 112, no. 5, pp. 608–617. doi 10.1577/1548-8659(1983)112<608:UFDOCP>2.0.CO;2

15. Battaile, B.C. and Quinn II, T.J., Catch per unit effort standardization of the eastern Bering Sea walleye pollock (Theragra chalcogramma) fleet, Fish. Res., 2004, vol. 70, no. 2–3, pp. 161–177. doi 10.1016/j.fishres.2004.08.029

16. Bentley, N., Kendrick, T.H., Starr, P.J., and Breen, P.A., Influence plots and metrics: tools for better understanding fisheries catch-per-unit-effort standardizations, ICES J. Mar. Sci., 2011, vol. 69, no. 1, pp. 84–88. doi 10.1093/icesjms/fsr174

17. Beverton, R.J.H. and Holt S.J., On the dynamics of exploited fish populations, London: Chapman and Hall, 1957.

18. Box, G.E.P. and Cox, D.R., An analysis of transformations, J. R. Statist. Soc. B (Methodological), 1964, vol. 26, no. 2, pp. 211–252.

19. Bürkner, P.-C., Advanced Bayesian Multilevel Modeling with the R Package brms, The R Journal, 2018, vol. 10, no. 1, pp. 395–411. doi 10.32614/RJ-2018-017

20. Bürkner, P.-C., brms: An R Package for Bayesian Multilevel Models Using Stan, J. of Statistical Software, 2017, vol. 80, no. 1, pp. 1–28. doi 10.18637/jss.v080.i01

21. Dunn, P.K. and Smyth, G.K., Series evaluation of Tweedie exponential dispersion model densities, Stat. Comput., 2005, vol. 15, no. 4, pp. 267–280. doi 10.1007/s11222-005-4070-y

22. Fisher, R., The Analysis of Variance with Various Binomial Transformations, Biometrics, 1954, vol. 10, no. 1, pp. 130–139. doi 10.2307/3001667

23. Hastie, T. and Tibshirani, R., Generalized Additive Models, Wiley StatsRef: Statistics Reference Online, 2014. doi 10.1002/9781118445112.stat03141

24. Hilborn, R. and Walters, C.J., Quantitative Fisheries Stock Assessment: Choice, Dynamics, and Uncertainty, New York: Chapman and Hall, 1992.

25. Jørgensen, B., The Theory of Dispersion Models: Monogr. Stat. Appl. Probab. (Book 76), London: Chapman and Hall, 1997.

26. Maunder, M.N. and Punt, A.E., Standardizing catch and effort data: a review of recent approaches, Fish. Res., 2004, vol. 70, no. 2–3, pp. 141–159. doi 10.1016/j.fishres.2004.08.002

27. Nelder, J.A. and Wedderburn, R.W.M., Generalized Linear Models, J. R. Statist. Soc. A (General), 1972, vol. 135, no. 3, pp. 370–384. doi 10.2307/2344614

28. Peña, E.A. and Slate, E.H., Global validation of linear model assumptions, J. Am. Stat. Assoc., 2006, vol. 101, no. 473, pp. 341–354. doi 10.1198/016214505000000637

29. Quinn, T.J. and Collie, J.S., Alternative population models for eastern Bering Sea pollock, Int. North Pac. Fish. Comm. Bull., 1990, vol. 50, pp. 243–258.

30. Quinn, T.J. and Deriso, R.B., Quantitative Fish Dynamics, New York: Oxford Univ. Press, 1999.

31. Sakamoto, Y., Ishiguro, M., and Kitagawa, G., Akaike Information Criterion Statistics, Mathematics and its Applications, Springer Netherlands, 1986.

32. Sprugel, D.G., Correcting for bias in log-transformed allometric equations, Ecology,1983, vol. 64, no. 1, pp. 209–210. doi 10.2307/1937343

33. Strobl, C., PostGIS, Encyclopedia of GIS, Shekhar, S., Xiong, H., eds, Springer, Boston, MA, 2008, pp. 891–898. doi 10.1007/978-0-387-35973-1_1012

34. Venables, W.N. and Dichmont, C.M., GLMs, GAMs and GLMMs: an overview of theory for applications in fisheries research, Fish. Res., 2004, vol. 70, no. 2–3, pp. 319–337. doi 10.1016/j.fishres.2004.08.011

35. Wood, S.N., Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models, J. R. Statist. Soc. B (Statistical Methodology), 2011, vol. 73, no. 1, pp. 3–36. doi 10.1111/j.1467-9868.2010.00749.x

36. Wood, S.N., Generalized Additive Models: An Introduction with R, New York: Chapman and Hall/CRC, 2017, second edition. doi 10.1201/9781315370279

37. Wood, S.N., Stable and Efficient Multiple Smoothing Parameter Estimation for Generalized Additive Models, J. Am. Stat. Assoc., 2004, vol. 99, no. 467, pp. 673–686. doi 10.1198/016214504000000980

38. Wood, S.N., Thin plate regression splines, J. R. Statist. Soc. B (Statistical Methodology), 2003, vol. 65, no. 1, pp. 95–114. doi 10.1111/1467-9868.00374

39. JPL MUR MEaSUREs Project. GHRSST Level 4 MUR Global Foundation Sea Surface Temperature Analysis Ver. 4.1, PO.DAAC, CA, USA, 2015. doi 10.5067/GHGMR-4FJ04.


Review

For citations:


Kulik V.V., Varkentin A.I., Ilyin O.I. Standardization of CPUE for walleye pollock in the Okhotsk Sea with inclusion of some environmental factors. Izvestiya TINRO. 2020;200(4):819-836. (In Russ.) https://doi.org/10.26428/1606-9919-2020-200-819-836

Views: 692


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1606-9919 (Print)
ISSN 2658-5510 (Online)