Basic principles of developing and interpretation of validity for fishery forecasts of pacific salmon in the Kamchatka Region in the modern period (analytical review for 2010–2020s)
https://doi.org/10.26428/1606-9919-2024-204-964-1002
EDN: UWVHLB
Abstract
Basic principles of fishery forecasts developing and their performance evaluation are considered for the modern forecasting of pacific salmon stocks dynamics in Kamchatka in 2018–2024. The forecasts validity is critically analyzed for the main units of the stocks, with attention to correct interpretation of the results and possible reasons of discrepancy between predicted and actual stock dynamics. Methodological aspects of forecasting are described taking into account the species specifics for pacific salmon. Certain stock units whose abundance forecasting is available using mathematical modeling are outlined. In the modern period of high abundance of salmon, a trend approach to forecasting is rational, because of possibility of prompt adjustment of the catch values in dependence on actual volume of the salmon runs. Climate and oceanographic conditions at Kamchatka are described for the modern period. Ecosystem nature of the discrepancy between predicted and actual rates of runs and catches for pacific salmon in 2020 and 2024 is shown. Density factor in the ecosystem due to significant increase of the salmon abundance in 2010–2020s is determined as the most likely reason of unexpectedly weak runs, presumably because of heightened mortality of fish with the length and weight decreasing under environmental changes negative for their food base. Special attention in forecasting should be paid to vast areas of positive or negative SST anomalies on the feeding grounds of Kamchatka herds of pacific salmon in the southwestern Bering Sea and North-West Pacific during their early pre-spawning migrations.
Keywords
About the Authors
A. V. BugaevRussian Federation
Alexander V. Bugaev, D.Biol., deputy director
18, Naberezhnaya Street, Petropavlovsk-Kamchatsky, 683000
O. V. Zikunova
Russian Federation
Olga V. Zikunova, Ph.D., head of laboratory
18, Naberezhnaya Street, Petropavlovsk-Kamchatsky, 683000
O. B. Tepnin
Russian Federation
Oleg B. Tepnin, head of sector
18, Naberezhnaya Street, Petropavlovsk-Kamchatsky, 683000
N. B. Artyukhina
Russian Federation
Nina B. Artyukhina, head of sector
18, Naberezhnaya Street, Petropavlovsk-Kamchatsky, 683000
N. Yu. Shpigalskaya
Russian Federation
Nina Yu. Shpigalskaya, Ph.D., director
18, Naberezhnaya Street, Petropavlovsk-Kamchatsky, 683000
References
1. Atlas rasprostraneniya v more razlichnykh stad tikhookeanskikh lososey v period vesenne-letnego nagula i prednerestovykh migratsiy (Atlas of the distribution in the sea of various herds of Pacific salmon during the spring-summer feeding and pre-spawning migrations), Gritsenko, O.F., ed., Moscow: VNIRO, 2002.
2. Babayan, V.K., Bobyrev, A.E., Bulgakova, T.I., Vasiliev, D.A., Ilyin, O.I., Kovalev, Yu.A., Mikhailov, A.I., Mikheev, A.A., Petukhova, N.G., Safaraliev, I.A., Chetyrkin, A.A., and Sheremetyev, A.D., Metodicheskiye rekomendatsii po otsenke zapasov prioritetnykh vidov vodnykh biologicheskikh resursov (Guidelines for assessing stocks of priority types of aquatic biological resources), Moscow: VNIRO, 2018.
3. Baitaluk, A.A. and Zuenko, Yu.I., The Impact of Changes in Oceanological Processes on the Productivity of Aquatic Biological Resources in the Far Eastern Seas of Russia from the Position of Rational Nature Management and Ensuring Sustainable Development of the Fishing Industry, in Tez. dokl. Vseros. nauch.-prakt. konf. s mezhdunar. uchastiyem «Rossiya v desyatiletii OON nauk ob okeane» (Abstracts of the Report of the All-Russian Scientific and Practical Conf. with International Participation “Russia in the UN Decade of Ocean Sciences”), Moscow, November 6–8, 2024, Moscow: RTU MIREA (in press).
4. Birman, I.B., Morskoi period zhizni i voprosy dinamiki stada tikhookeanskikh lososei (The Marine Life History and the Issues of Dynamics of the Pacific Salmon Stock), Moscow: Agropromizdat, 1985.
5. Bugaev, А.V., Evaluation of contributions of stock abundance and global temperature anomaly to mean body weight of pacific salmons in the North Pacific basin, Izv. Tikhookean. Nauchno-Issled. Inst. Rybn. Khoz. Okeanogr., 2017, vol. 191, pp. 3–33. doi 10.26428/1606-9919-2017-191-3-33
6. Bugaev, A.V., Prednerestovye migratsii tikhookeanskikh lososei v ekonomicheskoi zone Rossii (Pre-Spawn Migrations of Pacific Salmon in the Economic Zone of Russia), Petropavlovsk-Kamchatsky: KamchatNIRO, 2015.
7. Bugaev, A.V., Zikunova, O.V., Shpigalskaya, N.Yu., Artyukhina, N.B., Shubkin, S.V., Kovalenko, M.N., and Lozovoy, A.P., Analytical review of the results of salmon fisheries in Kamchatka territory in 2018–2022 (forecasts, fisheries, stocks). Communication 1 (pink salmon, chum salmon), Issled. Vodn. Biol. Resur. Kamchatki Sev.-Zapadn. Chasti Tikhogo Okeana, 2023, vol. 68, pp. 5–41. doi 10.15853/2072-8212.2023.68.5-41
8. Bugaev, A.V., Zikunova, O.V., Artyukhina, N.B., and Shubkin, S.V., Analytical review of the results of salmon fisheries in Kamchatka territory in 2018–2022 (forecasts, fisheries, stocks). Communication 2 (sockeye salmon, coho salmon, chinook salmon), Issled. Vodn. Biol. Resur. Kamchatki Sev.-Zapadn. Chasti Tikhogo Okeana, 2023, vol. 68, pp. 42–62. doi 10.15853/2072-8212.2023.68.42-62
9. Bugayev, A.V., Lepskaya, Ye.V., Koval, M.V., Tepnin, O.B., Zikunova O.V., and Fel’dman, M.G., Review of the results of the salmon route-2020 in the Kamchatka Territory (message 2): analysis of the reliability of forecasts and possible reasons for their discrepancy, in Byull.’ N 15 izucheniya tikhookeanskikh lososei na Dal’nem Vostoke (Bull. No. 15 for the Study of Pacific Salmon in the Far East), Vladivostok: TINRO, 2020, pp. 141–170.
10. Bugaev, A.V. and Tepnin, O.B., Klimat i tikhookeanskiye lososi (Climate and Pacific salmon), Petropavlovsk-Kamchatsky: KamchatNIRO, 2024.
11. Bugaev, A.V., Tepnin, O.B., Shpigalskaya, N.Yu., and Kulik, V.V., Description of regression models for predicting the dynamics of pink salmon returns in the Kamchatka region based on climate-oceanological and population-genetic data, Izv. Tikhookean. Nauchno-Issled. Inst. Rybn. Khoz. Okeanogr., 2024, vol. 204, no. 2, pp. 477–508. doi 10.26428/1606-9919-2024-204-477-508. EDN: KKJUSG
12. Bugaev, А.V., Fel’dman, M.G., Tepnin, O.B., and Koval, M.V., On the use of the data of the anomaly of the water surface temperature in the western part of the Northern Pacific as a potential climatic predictor for predicting the number of pacific salmon of Kamchatka, Vopr. Rybolov., 2021, vol. 22, no. 4, pp. 46–62. doi 10.36038/0234-2774-2021-22-4-46-62
13. Dashko, N.A. and Varlamov, S.M., Assessment of changes in the characteristics of the centers of action of the atmosphere of the Asian-Pacific region during the 20th century and their impact on the circulation over the Sea of Japan, in Tematicheskii vypusk DVNIGMI N 3 (Thematic Issue of the Far Eastern Regional Hydrometeorological Research Institute no. 3), Vladivostok: Dal’nauka, 2000, pp. 10–25.
14. Doronin, Yu.P., Regional’naya okeanologiya (Regional oceanology), Leningrad: Gidrometeoizdat, 1986.
15. Dubynin, V.A., Variability of biological indices and abundance dynamics of the Ozernaya River sockeye salmon Oncorhynchus nerka (Walbaum) stock in the modern period (1971–2020), Issled. Vodn. Biol. Resur. Kamchatki Sev.-Zapadn. Chasti Tikhogo Okeana, 2023, vol. 71, pp. 60–79. doi 10.15853/2072-8212.2023.71.60-79
16. Dubynin, V.A., Shevlyakov, E.A., and Ilyin, O.E., On the forecast method of sockeye salmon Oncorhynchus nerka generation abundance for the Ozernaya River stock, Izv. Tikhookean. Nauchno-Issled. Inst. Rybn. Khoz. Okeanogr., 2007, vol. 149, pp. 219–225.
17. Dyakov, Yu.P. and Bugaev, A.V., On commercial exploitation of biological resources in waters of Kamchatka Territory, Vestn. Kamchatskogo Gos. Tekh. Univ., 2023, no. 63, pp. 66–77. doi 10.17217/2079-0333-2023-63-66-77
18. Dyakov, Yu.P. and Bugaev, A.V., Current state and dynamics of bioresources of Kamchatka, Vopr. geografii Kamchatki, 2022, no. 17, pp. 26–37.
19. Zikunova, O.V., Dubynin, V.A., Zavarina, L.O., Shubkin, S.V., and Bugaev A.V., Trends in abundance, prediction, fishery management sockeye salmon (Oncorhynchus nerka) and chum salmon (Oncorhynchus keta) in Kamchatka territory, Vopr. Rybolov., 2021, vol. 22, no. 4, pp. 75–85. doi 10.36038/0234-2774-2021-22-4-75-85
20. Karpenko, V.I., Andrievskaya, L.D., and Koval’, M.V., Pitaniye i osobennosti rosta tikhookeanskikh lososei v morskikh vodakh (Feeding Habits and Pattern of Growth of Pacific Salmon in Marine Waters), Petropavlovsk-Kamchatsky: KamchatNIRO, 2013.
21. Klyashtorin, L.B. and Lyubushin, A.A., Tsiklicheskiye izmeneniya klimata i ryboproduktivnosti (Cyclic Changes in Climate and Fish Capacity), Moscow: VNIRO, 2005.
22. Spravochnye materialy po drifternomu lovu tikhookeanskikh lososei (Reference Materials on Driftnet Fishing of Pacific salmons), Gritsenko, O.F., ed., Moscow: VNIRO, 2010.
23. Feldman, M.G., Using the decisions of the Random Forest algorithm for the purposes of forecasting pink salmon runs on north-eastern Kamchatka, Issled. Vodn. Biol. Resur. Kamchatki Sev.-Zapadn. Chasti Tikhogo Okeana, 2020, vol. 59, pp. 76–96. doi 10.15853/2072-8212.2020.59.76-96
24. Feldman, M.G. and Bugaev, A.V., Modern principles of pink salmon (Oncorhynchus gorbuscha) stocks management in the Kamchatka region (population dynamics, forecasting, fishing regulation), Vopr. Rybolov., 2021, vol. 22, no. 4, pp. 86–95. doi 10.36038/0234-2774-2021-22-4-86-95
25. Feldman, M.G., Bugaev, A.V., and Tepnin, O.B., Results of using climate-oceanological predictors in a Random Forest model for the forecast of stock abundance dynamics of pink salmon runs in Western Kamchatka, Issled. Vodn. Biol. Resur. Kamchatki Sev.-Zapadn. Chasti Tikhogo Okeana, 2022, vol. 65, pp. 42–51. doi 10.15853/2072-8212.2022.65.42-51
26. Feldman, M.G., Bugaev, A.V., Zikunova, O.V., Shubkin, S.V., and Dubynin, V.A., Substantiation of the harvest control rules for salmon fishery in Kamchatka in view of the concept of precautionary approuch and providing the maximum sustainable yield, Issled. Vodn. Biol. Resur. Kamchatki Sev.-Zapadn. Chasti Tikhogo Okeana, 2022, vol. 64, pp. 5–34. doi 10.15853/2072-8212.2022.64.5-34.
27. Feldman, M.G. and Shevlyakov, E.A., Survival of Kamchatka pink salmon as result of combined influence of density regulation and environmental factors, Izv. Tikhookean. Nauchno-Issled. Inst. Rybn. Khoz. Okeanogr., 2015, vol. 182, pp. 88–114. doi 10.26428/1606-9919-2015-182-88-114
28. Feldman, M.G., Shevlyakov, E.A., and Dubynin, V.A., Estimation of the size, forecast and management of Pacific salmon stocks in Kamchatka Krai, in Mater. nauch. konf. “Sovremennoye sostoyaniye i perspektivy lososevogo khozyaystva na Dal’nem Vostoke Rossii” (Proc. Sci. Conf. “Current state and prospects of salmon farming in the Russian Far East”), Yuzhno-Sakhalinsk: SakhNIRO, 2018, pp. 38–48.
29. Shuntov, V.P. and Temnykh, O.S., Tikhookeanskie lososi v morskikh i okeanicheskikh ekosistemakh (Pacific Salmon in Marine and Ocean Ecosystems), Vladivostok: TINRO-Tsentr, 2011, vol. 2.
30. Akaike, H.A., New look at the statistical model identification, IEEE Transactions on Automatic Control., 1974, vol. 19, no. 6, pp. 716–723.
31. Beamish, R.J., Neville, C.E., and Cass, A.J., Production of Fraser River sockeye salmon Oncorhynchus nerka in relation to decadal-scale changes in the climate and the ocean, Can. J. Fish. Aquat. Sci., 1997, vol. 54, no. 3, pp. 543–554. doi 10.1139/f96-310
32. Beverton, R.J.H. and Holt, S.J., On the dynamics of exploited fish populations, London: Chapman and Hall, 1957.
33. Box, G.E.P. and Jenkins, G.M., Time Series Analysis: Forecasting and Control, University of Minnesota: Holden-Day, 1970.
34. Breiman, L., Random forests, Mach. Learn., 2001, vol. 45, no. 1, pp. 5–32. doi 10.1023/A:1010933404324
35. Dekking, F.M., Kraaikamp, C., Lopuhaä, H.P., and Meester, L.E., A Modern Introduction to Probability and Statistics. Understanding Why and How, London: Springer, 2005.
36. Haeseker, S.L., Peterman, R.M., and Su, Z., Retrospective Evaluation of Preseason Forecasting Models for Sockeye and Chum Salmon, North American Journal of Fisheries Management, 2008, vol. 28, no. 1, pp. 12–29. doi 10.1577/M06-287.1
37. Huang, B., Liu, C., and Banzon, V., Freeman, E., Graham, G., Hankins, B., Smith, T., and Zhang, H.-M., Improvements of the Daily Optimum Interpolation Sea Surface Temperature (DOISST) Version 2.1, J. Climate, 2021, vol. 34, no. 8, pp. 2923–2939. doi 10.1175/JCLI-D-20-0166.1
38. Hyndman, R.J., Koehler, A.B., Snyder, R.D., and Grose, S., A state space framework for automatic forecasting using exponential smoothing methods, Intern. Journ. Forecasting, 2002, vol. 18, no. 3, pp. 439–454. doi 10.1016/S0169-2070(01)00110-8
39. Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Leetmaa, A., Reynolds, B., Chelliah, M., Ebisuzaki, W., Higgins W., Janowiak, J., Mo, K.C., Ropelewski, C., Wang, J., Jenne, R., and Joseph, D., The NCEP/NCAR 40-year Reanalysis Project, Bull. Amer. Meteor. Soc., 1996, vol. 77, no. 3, pp. 437–472. doi 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
40. Latif, M. and Barnett, T.P., Decadal climate variability over the North Pacific and North America: Dynamics and predictability, J. Climate, 1996, vol. 9, no. 10, pp. 2407–2423. doi 10.1175/1520-0442(1996)009<2407:DCVOTN>2.0.CO;2
41. Neter, J., Wasserman, W., and Kutner, M.H., Applied linear statistical models: regression, analysis of variance, and experimental designs, 3rd ed., Burr Ridge: Irwin, 1990.
42. Peterman, R.M., Model of salmon age structure and its use in preseason forecasting and studies of marine survival, Can. J. Fish. Aquat. Sci., 1982, vol. 39, no. 11, pp. 1444–1452. doi 10.1139/f82-195
43. Ricker, W.E., Computation and interpretation of biological statistics of fish populations, Bull. Fish. Res. Bd Canada, 1975, vol. 191.
44. Ricker, W.E., Stock and recruitment, J. Fish. Res. Bd Canada, 1954, vol. 11, no. 5, pp. 559–623. doi 10.1139/f54-039
45. Schwarz, G., Estimating the dimension of a model, Annals of Statistics, 1978, vol. 6, no. 2, pp. 461–464. doi 10.1214/aos/1176344136
46. Sugiura, N., Further analysis of the data by Akaike’s information criterion and the finite corrections, Communications in Statistics. Theory and Methods, 1978, vol. 7, no. 1, pp. 13–26. doi 10.1080/03610927808827599
47. Surry, A.M. and King, J.R., A new method for calculating ALPI: the Aleutian Low pressure index, Can. Tech. Rep. Fish. Aquat. Sci., 2015, no. 3135.
48. The Ocean Ecology of Pacific Salmon and Trout, Beamish R.J., ed., Bethesda, Md.: Am. Fish. Soc., 2018.
49. https://psl.noaa.gov/data/climateindices/list. Cited September, 2024.
50. https://www.cpc.ncep.noaa.gov/products/precip/CWlink/daily_ao_index/monthly.ao.index.b50.current.ascii. Cited September, 2024.
51. https://psl.noaa.gov. Cited September, 2024.
52. http://nsidc.org. Cited September, 2024.
53. https://code.mpimet.mpg.de/projects/cdo/wiki. Cited September, 2024.
54. https://odv.awi.de. Cited September, 2024.
55. Prikaz Ministerstva rybnogo khozyaystva SSSR ot 09 Sentyabrya 1980 g. № 408 «O razgranichenii Mirovogo okeana na promyslovyye rayony v novykh usloviyakh promysla» (Order of the USSR Ministry of Fisheries dated September 9, 1980 No. 408 “On the delimitation of the World Ocean into fishing areas under new fishing conditions”).
Review
For citations:
Bugaev A.V., Zikunova O.V., Tepnin O.B., Artyukhina N.B., Shpigalskaya N.Yu. Basic principles of developing and interpretation of validity for fishery forecasts of pacific salmon in the Kamchatka Region in the modern period (analytical review for 2010–2020s). Izvestiya TINRO. 2024;204(4):964-1002. (In Russ.) https://doi.org/10.26428/1606-9919-2024-204-964-1002. EDN: UWVHLB