Assessment of potential production for sea cucumber Apostichopus japonicus in a bicultural marine farm in Peter the Great Bay (Japan Sea)
https://doi.org/10.26428/1606-9919-2018-195-209-218
Abstract
Marine farms in Peter the Great Bay are oriented predominantly to cultivation of bivalve mollusks that causes excessive accumulation of biodeposits in the areas of plantations. To reduce this negative impact on the ecosystem, development of bicultural farms with cultivation of flterfeeders and detritivores is recommended. In the area of mussel (Mytilus trossulus) plantations in the Sukhodol Bay, the sedimentation rate reaches 34.1 g.m–2.day–1, with mean portion of organic carbon in the biodeposits as 20.2 %. Annual biodeposition from 1 hectare of mussel plantations is about 124 t that corresponds to annual consumption of detritus by 1 million of 1-year-old sea cucumber Apostichopus japonicus. By the end of the 4-year cycle of cultivation, the sea cucumbers of commercial size consume this amount of biodeposits within a month (60 g of organic carbon per year each). Production of a sea cucumber plantation with 5 million juveniles of sea cucumber settling every year can exceed 700 t in 10 years of operation, if it is mounted within the bicultural marine farm with bivalve cages as additional source of suspended organic matter.
About the Author
G. S. GavrilovaRussian Federation
Gavrilova Galina S., D.Sc., principal researcher
References
1. Bregman, Yu.E., Bioenergetics of trophic chain “flter-feeding mollusc — sea-cucumber — detritophage” in bioculture,Izv. Tikhookean. Nauchno–Issled. Inst. Rybn. Khoz. Okeanogr., 1994, vol. 113, pp. 5–12.
2. Gavrilova, G.S., Digestibility of food by Japanese sea cucumber, Rybn. Khoz., 1994, no. 1, pp. 39–41.
3. Gavrilova, G.S. and Kucheryavenko, A.V., Farming of sea cucumber Apostichopus japonicus in Peter the Great Bay: methodical specifcs and business results of the aquaculture farm in the Sukhodol Bight, Izv. Tikhookean. Nauchno–Issled. Inst. Rybn. Khoz. Okeanogr., 2010, vol. 162, pp. 342–354.
4. Dudarev, O.V., Botsul, A.I., Savelyeva, P.I., Charkin, A.N., Dubina, V.A., and Anikeev, V.V., The scale of variation of lithological and biogeochemical processes in the estuary of the Razdolnaya River (Sea of Japan): Fluxes of terrigenous matter and formation of bottom sediments, in Sostoyanie morskikh ekosistem, nakhodyashchikhsya pod vliyaniem rechnogo stoka (Status of Marine Ecosystems Exposed to River Runoff), Vladivostok: Dal’nauka, 2005, pp. 7–41.
5. Kucheryavenko, A.V., Organicheskoe veshchestvo v melkovodnykh bukhtakh zaliva Pos’eta (Organic Matter in Shallow Coves of Possyet Bay), Vladivostok: TINRO-Tsentr, 2002.
6. Lastovetsky, E.I., Climatic features of the washing seas, in Klimat Vladivostoka (The Climate of Vladivostok), Leningrad: Gidrometeoizdat, 1978, pp. 159–162.
7. Levin, V.S., Dal’nevostochnyi trepang (Japanese Sea Cucumber), Vladivostok: Dal’nevost. Knizhnoye Izd., 1982.
8. Levin, V.S., Pitanie melkovodnykh goloturii i ego vliyanie na donnye osadki (Diet of Shallow-Water Holothurians (Echinodermata) and Its Effect on the Environment), St. Petersburg: Politekhnika, 1999.
9. Obshchie osnovy izucheniya vodnykh ekosistem (General Bases for the Study of Aquatic Ecosystems), Vinberg, G.G., ed., Leningrad: Nauka, 1979.
10. Khristoforova, N.K., Shulkin, V.M., Kavun, V.Ya., and Chernova, E.N., Distribution and composition of suspended matter: terrigenous and biogenic material, in Tyazhelye metally v promyslovykh i kul’tiviruemykh mollyuskakh zaliva Petra Velikogo (Heavy Metals in Commercial and Cultivated Mollusks of Peter the Great Bay), Vladivostok: Dal’nauka, 1993, pp. 89–97.
11. Byron, C.J., Jin, D., and Dalton, T.M., An integrated ecological-economic modeling framework for the sustainable management of oyster farming, Aquaculture, 2015, vol. 447, pp. 15–22. doi 10.1016/j.aquaculture.2014.08.030
12. Choe, S., Biology of the Japanese Common Sea Cucumber Stichopus japonicus Selenka, Tokyo: Kaibundo, 1963.
13. Cubillo, A.M., Ferreira, J.G., Robinson, S.M.C., Pearce, C.M., Corner, R.A., and Johansen, J., Role of deposit feeders in integrated multi-trophic aquaculture — A model analysis, Aquaculture, 2016, vol. 453, pp. 54–66. doi 10.1016/j.aquaculture.2015.11.031
14. Lawrence, J.M., A Functional Biology of Echinoderms, Baltimore: Johns Hopkins Univ. Press, 1987.
15. Park, S.K., Davidson, K., and Pan, M., Economic relationships between aquaculture and capture fsheries in the Republic of Korea, Aquacult. Econ. Manage., 2012, vol. 16, no. 2, pp. 102–116.
16. Rafalowski, S. and Plante, C., Non-equilibrium processes structuring benthic bacterial communities following deposit feeding by a sea cucumber, Mar. Ecol.: Prog. Ser., 2013, vol. 478, pp. 115–126. doi 10.3354/meps10162
17. Slater, M.J. and Carton, A.G., Effect of sea cucumber (Australostichopus mollis) grazing on coastal sediments impacted by mussel farm deposition, Mar. Pollut. Bull., 2009, vol. 58, no. 8, pp. 1123–1129. doi 10.1016/j.marpolbul.2009.04.008
18. Tanaka, Y., Feeding and digestive processes of Stichopus japonicus, Bull. Fac. Fish. Hokkaido Univ., 1958, vol. 9, pp. 14–28.
19. Toral-Granda, V., The biological and trade status of sea cucumbers in the families Holothuriidae and Stichopodidae, 22nd Meet. Anim. Comm., CITES, Lima (Peru), 7–13 July 2006, AC 22 Doc. 16, 2006.
20. Wolkenhauer, S.-M., Uthicke, S., Burridge, C., Skewes, T., and Pitcher, R., The ecological role of Holothuria scabra (Echinodermata: Holothuroidea) within subtropical seagrass beds, J. Mar. Biol. Assoc. U. K., 2010, vol. 90, no. 2, pp. 215–223.
21. Xie, B., Qin, J., Yang, H., Wang, X., Wang, Y.-H., and Li, T.-Y., Organic aquaculture in China: A review from a global perspective, Aquaculture, 2013, vols. 414–415, pp. 243–253. doi 10.1016/j.aquaculture.2013.08.019
22. Zhou, Y., Yang, H., Liu, S., Yuan, X., Mao, Y., Liu, Y., Xu, X., and Zhang, F., Feeding and growth on bivalve biodeposits by the deposit feeder Stichopus japonicus Selenka (Echinodermata: Holothuroidea) co-cultured in lantern nets, Aquaculture, 2006, vol. 256, nos. 1–4, pp. 510–520. doi 10.1016/j.aquaculture.2006.02.005
23. Rukovodstvo po sovremennym biokhimicheskim metodam issledovaniya vodnykh ekosistem, perspektivnykh dlya promysla i marikul’tury (Guide to Modern Biochemical Methods for the Study of Aquatic Ecosystems, Promising for Fisheries and Mariculture), Moscow: VNIRO, 2004.
24. Sostoyanie promyslovykh resursov. Prognoz obshchego vylova gidrobiontov po Dal’nevostochnomu rybokhozyaistvennomu basseinu na 2015 g. (kratkaya versiya) (The Status of Fisheries Resources. Prediction of the Total Catch of Aquatic Species for the Far Eastern Fishery Basin in 2015 (Abridged version)), Vladivostok: TINRO-Tsentr, 2015.
Review
For citations:
Gavrilova G.S. Assessment of potential production for sea cucumber Apostichopus japonicus in a bicultural marine farm in Peter the Great Bay (Japan Sea). Izvestiya TINRO. 2018;195(4):209-218. (In Russ.) https://doi.org/10.26428/1606-9919-2018-195-209-218