Preview

Izvestiya TINRO

Advanced search

MEAN CLIMATIC PARAMETERS OF THE UPPER MIXED LAYER IN THE BERING SEA (LOWER BOUNDARY, TEMPERATURE, SALINITY) AND THEIR ANNUAL VARIABILITY

https://doi.org/10.26428/1606-9919-2019-199-214-230

Abstract

All available deep-water oceanographic data obtained in the Bering Sea in 1929–2019 are analyzed (101,425 oceanographic stations). Lower boundary of the upper mixed layer is determined from the vertical temperature profiles using the criterion of temperature deflection from SST (10 % for June-October and 0.2, 0.3, and 0.5 o С for November-May). The mixed layer is rather thin in June-September, its thickness is 10–20 m over the major part of the sea, and 30–40 m at the straits between central Aleutian Islands. In DecemberMarch, the mixed layer depth increases to 120–160 m in the northern deep-water sea and up to 180–200 m at the straits between central and eastern Aleutian Islands, though it is thinner in plumes of warm waters entering from the Pacific. At the continental shelf, the mixed layer can be traced to the depth of 20–40 m in the eastern Bering Sea and 60–80 m at Kamchatka in December-January and to 60–80 m in the eastern Bering Sea and 80–100 m at Kamchatka in February-March. The mixed layer temperature distribution is distinguished by two completely different seasonal patterns. The winter distribution pattern with the highest temperature in the areas adjacent to the Aleutian Straits is typical for November-June. The summer pattern with high temperature in the Karaginsky Bay, Bristol Bay, and Norton Sound and lower temperature near the Aleutian Straits is typical for July-October. On the contrary, the salinity distribution pattern is stable, with the highest salinity at the central and eastern Aleutian Straits and lower salinity in the coastal zone as the Anadyr Bay and Norton Sound influenced by the river runoff.

About the Author

V. A. Luchin
Pacific Oceanological Institute, Far East Branch, Russian Ac. Sci.
Russian Federation
Luchin Vladimir A., D.Geogr., leading researcher


References

1. Arsen’ev, V.S., Techeniya i vodnye massy Beringova morya (Currents and water masses of the Bering Sea), Moscow: Nauka, 1967.

2. Gershanovich, D.E. and Muromtsev, A.M., Okeanologicheskie osnovy biologicheskoi produktivnosti Mirovogo okeana (Oceanological Basics of the Biological Capacity of the World Ocean), Leningrad: Gidrometeoizdat, 1982.

3. Dulepova, E.P., Ecosystem researches of TINRO-Сenter in the Far Eastern Seas, Izv. Tikhookean. Nauchno–Issled. Inst. Rybn. Khoz. Okeanogr., 2005, vol. 141, pp. 3–29.

4. Zuenko, Yu.I., Khen, G.V., and Yurasov, G.I., Water masses and types of vertical water structure of the Bering Sea shelf, Russ. Meteorol. Hydrol., 1998, no. 10, pp. 59–67.

5. Leonov, A.K., Regional’naya okeanografiya. Ch. 1. Beringovo, Okhotskoe, Yaponskoe, Kaspiiskoe, Chernoe morya (Regional Oceanography, part 1: Bering Sea, Sea of Okhotsk, Sea of Japan, Caspian Sea, and Black Sea), Leningrad: Gidrometeoizdat, 1960.

6. Luchin V.A. Intra-annual variability of the mixed layer parameters in the Okhotsk Sea, Izv. Tikhookean. Nauchno–Issled. Inst. Rybn. Khoz. Okeanogr., 2018, vol. 195, pp. 170–183.

7. Luchin, V.A., Menovshchikov, V.A., Lavrentiev, V.M., and Khen, G.V., Hydrology of waters, in Gidrometeorologiya i gidrokhimiya morei. T. 10: Beringovo more, vyp. 1: Gidrometeorologicheskiye usloviya (Hydrometeorology and hydrochemistry of the seas, vol. 10: Bering Sea, no. 1: Hydrometeorological conditions), St. Peteresburg: Gidrometeoizdat, 1999, pp. 77–153.

8. Luchin, V.A., Menovshchikov, V.A., and Khen G.V., Water Circulation of the Bering Sea, Tr. Dal’nevost. Nauchno-Issled. Gidrometeorol. Inst., 1989, vol. 39, pp. 97–103.

9. Moiseev, L.K., Stratification of the temperature field, Tr. Vses. Nauchno-Issled. Gidrometeorol. Inst.-MCD, 1978, vol. 45, pp. 36–62.

10. Natarov, V.V., On the water masses and currents of the Bering Sea, Tr. Vses. Nauchno–Issled. Inst. Rybn. Khoz. Okeanogr., 1963, vol. 48, Izv. Tikhookean. Nauchno–Issled. Inst. Rybn. Khoz. Okeanogr., vol. 50, pp. 111–133.

11. Poluektov, S.V. and Khistyaev, Yu.A., Thermal stratification of the active layer of the Bering Sea in winter, Tr. Dal’nevost. Nauchno-Issled. Inst., 1981, no. 83, pp. 15–23.

12. Radchenko, V.I., Mel’nikov, I.V., Volkov, A.F., Semenchenko, A.Yu., Glebov, I.I., and Mikheev, A.A., Environmental conditions and composition of plankton and nekton in epipelagic layer of the southern Sea of Okhotsk and adjacent Pacific waters in summer, Russ. J. Mar. Biol., 1997, vol. 23, no. 1, pp. 15–25.

13. Starichenko, L.A., Botyanov, V.E., and Yudin K.B., Meteorology and climate, , in Gidrometeorologiya i gidrokhimiya morei. T. 10: Beringovo more, vyp. 1: Gidrometeorologicheskiye usloviya (Hydrometeorology and hydrochemistry of the seas, vol. 10: Bering Sea, no. 1: Hydrometeorological conditions), St. Peteresburg: Gidrometeoizdat, 1999, pp. 20–63.

14. Filyushkin, B.N., Thermal characteristics of the upper water layer in the North Pacific, Oceanological studies, 1968, no. 19, pp. 22–69.

15. Hen, G.V., Seasonal and interannual variability of the waters of the Bering Sea and its influence on the distribution and abundance of aquatic organisms, Cand. Sci. (Geogr.) Dissertation, Vladivostok, 1988.

16. Khen, G.V., Basyuk, E.O., and Matveev, V.I., Parameters of the upper mixed layer and thermocline layer and chlorophyll-a in the western deep basin of the Bering Sea in summer and fall of 2002–2013, Izv. Tikhookean. Nauchno–Issled. Inst. Rybn. Khoz. Okeanogr., 2015, vol. 182, pp. 115–131.

17. Shuntov, V.P., Biologiya dal’nevostochnykh morei Rossii (Biology of the Far Eastern Seas of Russia), Vladivostok: TINRO-Tsentr, 2001, vol. 1.

18. Shuntov, V.P., Biologiya dal’nevostochnykh morei Rossii (Biology of the Far Eastern Seas of Russia), Vladivostok: TINRO-Tsentr, 2016, vol. 2.

19. D’Ortenzio, F., Iudicone, D., de Boyer Montegut, C., Testor, P., Antoine, D., Marullo, S., Santoleri, R., Madec, G., Seasonal variability of the mixed layer depth in the Mediterranean Sea as derived from in situ profiles, Geophys. Res. Lett., 2005, vol. 32, no. 1–4, pp. L12605. Doi 10.1029/2005GL022463

20. Dong, S., Sprintall, J., Gille, S.T., and Talley, L., Southern Ocean mixed-layer depth from Argo float profiles, J. Geophys. Res., 2008, vol. 113, pp. C06013. doi 10.1029/2006JC004051

21. Falkowski, P.G., Barber, R., and Smetacek V., Biogeochemical controls and feedbacks on ocean primary production, Science, 1998, vol. 281, no. 5374, pp. 200–206. doi 10.1126/science.281.5374.200

22. Holte, J. and Talley, L.D., A new algorithm for finding mixed layer depths with application to Argo data and subantarctic mode water formation, J. Atmos. Oceanic Technol., 2009, vol. 26, pp. 1920–1939. doi 10.1175/2009JTECHO543.1

23. Jang, C.J., Park, J., Park, T., and Yoo, S., Response of the ocean mixed layer depth to global warming and its impact on primary production: a case for the North Pacific Ocean, ICES J. Mar. Sci., 2011, vol. 68, no. 6, pp. 996–1007. doi 10.1093/icesjms/fsr064

24. Jo, C.O., Lee, J.Y., Park, K.A., Kim, Y.H., and Kim, K.R., Asian dust initiated early spring bloom in the northern East/Japan Sea, Geophys. Res. Lett., 2007, vol. 34, pp. L05602. Doi 10.1029/2006GL027395

25. Kara, A.B., Rochford, P.A., and Hurlburt, H.E., An optimal definition for ocean mixed layer depth, J. Geophys. Res., 2000, vol. 105, no. C7, pp. 16803–16821. doi 10.1029/2000JC900072

26. Kinder, T.H., Coachman, L.K., and Galt, J.A., The Bering Slope current system, J. Phys. Oceanogr., 1975, vol. 5, pp. 231–244.

27. Kitano, K., A note on the thermal structure of the Eastern Bering Sea, J. Geophys. Res., 1970, vol. 75, no. 6, pp. 1110–1115.

28. Levitus, S., Climatological Atlas of the World Ocean, NOAA. Prof. Pap. 13, U.S. Department of Commerce, National Oceanic and Atmospheric Administration, 1982.

29. Lorbacher, K., Dommenget, D., Niller, P.P., and Köhl, A., Ocean mixed layer depth: a subsurface proxy of ocean-atmosphere variability, J. Geophys. Res., 2006, vol. 111, no. C7, pp. C07010. doi 10.1029/2003JC002157

30. Luchin, V., Kruts, A., Sokolov, O., Rostov, V., Rudykh, N., Perunova, T., Zolotukhin, E., Pischalnik, V., Romeiko, L., Hramushin, V., Shustin, V., Udens, Y., Baranova, O., Smolyar, I., and Yarosh, E., Climatic Atlas of the North Pacific Seas 2009: Bering Sea, Sea of Okhotsk, and Sea of Japan, NOAA Atlas NESDIS 67, Akulichev, V., Volkov, Yu., Sapozhnikov, V., and Levitus, S., Eds., U.S. Gov. Printing Office, Wash., D.C., 2009. DVD.

31. Luchin, V.A., Menovshchikov, V.A., Lavrentiev, V.M., and Reed, R.K., Thermohaline structure and water masses in the Bering Sea, Dynamics of the Bering Sea, Loughlin, T.R. and Ohtani, K., eds, Fairbanks: Univ. of Alaska Sea grant, 1999. pp. 61–91.

32. Matishov, G.G., Berdnikov, S.V., Zhichkin, A.P., Dzhenyuk, S.L., Smolyar, I.V., Kulygin, V.V., Yaitskaya, N.A., Povazhniy, V.V., Sheverdyaev, I.V., Kumpan, S.V., Tretyakova, I.A., Tsygankova, A.E., D’yakov, N.N., Fomin, V.V., Klochkov, D.N., Shatohin, B.M., Plotnikov, V.V., Vakulskaya, N.M., Luchin, V.A., and Kruts, A.A. Atlas of climatic changes in nine large marine ecosystems of the Northern Hemisphere (1827–2013), NOAA Atlas NESDIS 78, Matishov, G.G., Sherman, K., Levitus, S., eds, U.S. Ciov. Printing Office, Wash., DC., 2014.

33. Oh, D.C., Park, M.K., Choi, S.H., Kang, D.J., Park, S., Hwang, J., Andreev, A., Hong, G., and Kim, K.R., The air-sea exchange of CO2 in the East Sea (Japan Sea), J. Oceanogr., 1999, vol. 55, pp. 157–169.

34. Ohno, Y., Kobayashi, T., Iwasaka, N., and Suga, T., The mixed layer depth in the North Pacific as detected by the Argo floats, Geophys. Res. Lett., 2004, vol. 31, no. 11, pp. L11306. Doi 10.1029/2004GL019576

35. Ohtani, K., Oceanographic structure in the Bering Sea, Mem. Fac. Fish. Hok. Univ., 1973, vol. 21, no 1, pp. 64–106.

36. Oka, E., Talley, L.D., and Suga, T., Temporal variability of winter mixed layer in the mid- to high-latitude North Pacific, J. Oceanogr., 2007, vol. 63, pp. 293–307.

37. Panteleev, G., Yaremchuk, M., Luchin, V., Nechaev, D., and Kukuchi, T., Variability of the Bering Sea circulation in the period 1992–2010, J. Oceanogr., 2012, vol. 68, no. 4, pp. 485–496. https://doi.org/10.1007/s10872-012-0113-0

38. Takenouti, A.Y. and Ohtani, K., Currents and water masses in the Bering Sea: a review of Japanese work, Oceanography of the Bering Sea, Fairbanks, 1974, pp. 39–57.

39. Thomson, R.E. and Fine, I.V., Estimating mixed layer depth from oceanic profile data, J. Atmos. Oceanic Technol., 2003, vol. 20, pp. 319–329. doi 10.1175/1520-0426(2003)020<0319:EMLDFO>2.0.CO;2

40. Toyoda, T., Fujii, Y., Kuragano, T., Kamachi, M., Ishikawa, Y., Masuda, S., Sato, K., Awaji, T., Hernandez, F., Ferry, N., Guinehut, S., Martin, M., Peterson, K.A., Good, S., Valdivieso, M., Haines, K., Storto, A., Masina, S., Köhl, A., Zuo, H., Balmaseda, M., Yin, Y., Shi, L., Alves, O., Smith, G., Chang, Y.S., Vernieres, G., Wang, X., Forget, G., Heimbach, P., Wang, O., Fukumori, I., and Lee, T., Intercomparison and validation of the mixed layer depth fields of global ocean syntheses, Clim Dyn., 2017, vol. 49, no. 3, pp. 753–773. doi 10.1007/s00382-015-2637-7

41. Yamada, K., Ishizaka, J., Yoo, S., Kim, H.C., and Chiba, S., Seasonal and interannual variability of sea surface chlorophyll a concentration in the Japan/East Sea (JES), Prog. Oceanogr., 2004, vol. 61, no. 2–4, pp. 193–211. doi 10.1016/j.pocean.2004.06.001


Review

For citations:


Luchin V.A. MEAN CLIMATIC PARAMETERS OF THE UPPER MIXED LAYER IN THE BERING SEA (LOWER BOUNDARY, TEMPERATURE, SALINITY) AND THEIR ANNUAL VARIABILITY. Izvestiya TINRO. 2019;199(4):214-230. (In Russ.) https://doi.org/10.26428/1606-9919-2019-199-214-230

Views: 624


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1606-9919 (Print)
ISSN 2658-5510 (Online)