Hydrochemical state of the Uglovoy Bight (Amur Bay) in different seasons
https://doi.org/10.26428/1606-9919-2021-201-138-157
Abstract
Hydrological and chemical surveys were conducted in the Uglovoy Bight in October, 2019, February, May and June, 2020 (in total 120 stations) and chemical analyses of water from 13 small rivers running into the bight were done on October 21-22, 2020. Extremely high concentration of nutrients was detected in the Peschanka, Saperka and Gryaznukha Rivers that was obviously caused by waste waters discharge. These rivers were the main source of the bight eutrophication. Within the bight, the highest anomalies of chemical parameters, as low oxygen content, low pH, high concentrations of nutrients (N, P, Si), high turbidity, and high CO2 partial pressure were observed close to these rivers mouths, in particular under the ice in winter, when wind mixing was absent. The hypoxia disappeared in the warm period of year because of wind mixing. High concentrations of total nitrogen (10.0-40.0 μmol/L), total phosphorus (1.5-2.0 gmol/L), dissolved organic carbon (3-5 mgC/L), and chlorophyll a (0.5-2.0 μg/L) in all seasons were the results of active production-destruction processes, obviously with prevalence of organic matter destruction, since the water in the bight was undersaturated with oxygen and supersaturated with carbon dioxide — the bight accumulates and mineralizes organic matter from terrestrial and riverine discharge. Underwater photographs did not detect Zostera meadows at the bottom, which were observed in the northwestern Uglovoy bight in the past. Comparison of historical data on episodic studies in the bight with results of the surveys indicates degradation of its ecosystem, with such signs as disappearance of seagrass, hypoxia in winter, and CO2 flux into the atmosphere. Reduce in water exchange between the bight and the Amur Bay caused by construction of the underwater pipeline in 1982 and the bridge in 2012 is suggested as a reason of the degradation.
About the Authors
P. Ya. TishchenkoRussian Federation
Tishchenko Pavel Ya. - D.Chem., head of laboratory, Pacific Oceanological Institute, Russian Ac. Sci.
43, Baltiyskaya Street, Vladivostok, 690041.
Yu. A. Barabanshchikov
Russian Federation
Barabanshchikov Yury A. - researcher, Pacific Oceanological Institute, Russian Ac. Sci.
43, Baltiyskaya Street, Vladivostok, 690041.
G. Yu. Pavlova
Russian Federation
Pavlova Galina Yu. - Ph.D., leader researcher, Pacific Oceanological Institute, Russian Ac. Sci.
43, Baltiyskaya Street, Vladivostok, 690041.
A. A. Ryumina
Russian Federation
Ryumina Anna A._ post-graduate student, Pacific Oceanological Institute, Russian Ac. Sci.
43, Baltiyskaya Street, Vladivostok, 690041.
S. G. Sagalaev
Russian Federation
Sagalaev Sergey G. - researcher, Pacific Oceanological Institute, Russian Ac. Sci.
43, Baltiyskaya Street, Vladivostok, 690041.
P. Yu. Semkin
Russian Federation
Semkin Pavel Yu. - Ph.D., senior researcher, Pacific Oceanological Institute, Russian Ac. Sci.
43, Baltiyskaya Street, Vladivostok, 690041.
P. P. Tishchenko
Russian Federation
Tishchenko Petr P. - Ph.D., senior researcher, Pacific Oceanological Institute, Russian Ac. Sci.
43, Baltiyskaya Street, Vladivostok, 690041.
O. A. Ulanova
Russian Federation
Ulanova Olga A. - researcher, Pacific Oceanological Institute, Russian Ac. Sci.
43, Baltiyskaya Street, Vladivostok, 690041.
M. G. Shvetsova
Russian Federation
Shvetsova Maria G. - researcher, Pacific Oceanological Institute, Russian Ac. Sci.
43, Baltiyskaya Street, Vladivostok, 690041.
E. M. Shkirnikova
Russian Federation
Shkirnikova Elena M. - researcher, Pacific Oceanological Institute, Russian Ac. Sci.
43, Baltiyskaya Street, Vladivostok, 690041.
E. Yu. Tibenko
Russian Federation
Tibenko Evgenia Yu. - leading engineer, Pacific Oceanological Institute, Russian Ac. Sci.
43, Baltiyskaya Street, Vladivostok, 690041.
References
1. Blinovskaya, Y.Yu., Landscape characteristics and optimization of nature management in the coastal-marine zone of Posyet Bay, Extended Abstract of Cand. Sci. (Geogr.) Dissertation, Vladivostok: Tikhookean. Inst. Geogr. Dal'nevost. Otd. Ross. Akad Nauk, 2001.
2. Bychkov, A.S., Pavlova, G.Yu., and Kropotov, V.A., Carbonate system, in Khimiya morskoy vody i autigennoye mineraloobrazovaniye (Chemistry of sea water and authigenic mineral formation), V.I. Ilyichev, ed., Moscow: Nauka, 1989, pp. 49-111.
3. Vekhov, V.N., Zostera morskaya (Zostera marina L.) Belogo morya (Sea zostera (Zostera marina L.) of the White Sea), Moscow: Mosk. Gos. Univ., 1992.
4. Losev, O.V., Analysis of pollution sources of the Uglovoy Bay (Peter the Great Bay) and its pollution factors, Vestn. Dal'nevost. Otd. Ross. Akad. Nauk, 2019, no. 2, pp. 95-103, doi 10.25808/08697698.2019.204.2.011
5. Loseva, Ya.P. and Grivanova, S.M., Sewage treatment of the city of Vladivostok, Modern problems of science and education, 2014, no. 6, no. 1685.
6. Lysenko, V.N., Macrobenthos production of the Zostera marina community in the northwestern part of the Sea of Japan, Cand. Sci. (Biol.) Dissertation, Vladivostok: Dal'nevost. Nauchn. Tsentr, Akad. Nauk SSSR, 1985.
7. Pavlova, G.Yu., The carbonate system as an indicator of biogeochemical processes in the ocean, Cand. Sci. (Chem.) Dissertation, Vladivostok: Tikhookean. Okeanolog. Inst. Dal'nevost. Otd. Ross. Akad Nauk, 2001.
8. Pavlova, G.Yu., Tishchenko, P.Ya., Volkova, T.I., Dickson, A., and Wallmann, K., Intercalibration of Bruevich's method to determine the total alkalinity in seawater, Oceanology, 2008, vol. 48, no. 3, pp. 438-443.
9. Paymeeva, L.G., Biology of Zostera marina L. and Zostera asiatica Miki of Primorye, Cand. Sci. (Biol.) Dissertation, Vladivostok: Tikhookean. Nauchno-Issled. Inst. Rybn. Khoz. Okeanogr., 1984.
10. Petukhov, V.I., Losev, O.V., and Petrova, E.A., Water pollution by heavy metals and oil products in Uglovoi Bay in February 2010-2016, Water Resources, 2019, vol. 46, no. 1, pp. 103-111, doi 10.31857/S0321-0596461102-113
11. Rakov, V.A., Biological bases of cultivation of the Pacific oyster Crassostrea gigas (Thunberg) in Peter the Great Bay, Cand. Sci. (Biol.) Dissertation, Vladivostok: Tikhookean. Nauchno-Issled. Inst. Rybn. Khoz. Okeanogr., 1984.
12. Rakov, V.A., Effects of the Pacific oyster on the change of pH of the water, Izv. Tikhookean. Nauchno-Issled. Inst. Rybn. Khoz. Okeanogr., 1975, vol. 98, pp. 239-243.
13. Rakov, V.A., Distribution and ecology of oyster reefs in the northern part of the Amur Bay, in Sovremennoe sostoyanie i tendentsii izmeneniya prirodnoi sredy zaliva Petra Velikogo Yaponskogo morya (Current State and Trends in the Natural Environment of Peter the Great Bay, Sea of Japan), Moscow: GEOS, 2008, pp. 278-291.
14. Semiletov, I.P., Seasonal variability of the content of hydrocarbon gases and oxygen in the Uglovoe Bay, Tr. Dal'nevost. Nauchno-Issled. Gidrometeorol. Inst., 1987, vol. 131, pp. 80-84.
15. Starodubtseva, A.A., Ecology, physiology and productivity of Zostera marine L. on the White Sea, Cand. Sci. (Biol.) Dissertation, Petrozavodsk: Petrozavodsk. Gos. Univ., 2011.
16. Supranovich, T.I. and Yakunin, L.P., Hydrology of Peter the Great Bay, Tr. Dal'nevost. Nauchno-Issled. Gidrometeorol. Inst., Leningrad: Gidrometeoizdat, 1976, no. 22.
17. Tishchenko, P.Ya., Medvedev, E.V., Barabanshchikov, Yu.A., Pavlova, G.Yu., Sagalaev, S.G., Tishchenko, P.P., Shvetsova, M.G., Shkirnikova, E.M., Ulanova, O.A., Tibenko E.Yu., and Orekhova, N.A., Organic carbon and carbonate system in bottom sediments of shallow bays of Peter the Great Bay (Sea of Japan), Geochem. Int., 2020, vol. 65, no. 6, pp. 583-598, doi 10.31857/S001675252005012X
18. Tishchenko, P.Ya., Tishchenko, P.P., Zvalinsky, V.I., Shkirnikova, E.M., Chichkin, R.V., and Lobanov, V.B., Carbonate system of the Amur Bay (Japan Sea) in summer 2005, Izv. Tikhookean. Nauchno-Issled. Inst. Rybn. Khoz. Okeanogr., 2006, vol. 146, pp. 235-255.
19. Shklyarevich, G.A., Ecovery of Zostera marina L. thickets in Kandalaksha Bay, White Sea, Uch. Zap. Petrozavod. Gos. Univ., 1972, vol. 60, pp. 27-35.
20. Carpenter, J.H., The Chesapeake Bay Institute technique for the Winkler dissolved oxygen method, Limnol.Oceanogr., 1965, vol. 10, no. 1, pp. 141-143.
21. Duarte, C.M., Kennedy, H., Marba, N., and Hendriks I., Assessing the capacity of seagrass meadows for carbon burial: Current limitations and future strategies, Ocean Coast. Man., 2013, vol. 83, pp. 32-38, doi 10.1016/j.ocecoaman.2011.09.001
22. Grasshoff, K., Ehrhardt, M., and Kremling, K. (eds), Methods of Seawater Analysis, Wein-heim/Deerfield Beach, Florida: Verlag Chemie, 1983.
23. Gustafsson, C. and Bostrom, C., Algal mats reduce eelgrass (Zostera marina L.) growth in mixed and monospecific meadows, J. Exper. Mar. Bio. Ecol., 2014, vol. 461, pp. 85-92, doi 10.1016/j.jembe.2014.07.020
24. Howard, J., Hoyt, S., Isensee, K., Telszewski, M., and Pidgeon, E. (eds), Coastal Blue Carbon: Methods for assessing carbon stocks and emissions factors in mangroves, tidal salt marshes, and seagrasses, Arlington, Virginia, USA: Conservation International, Intergovernmental Oceanographic Commission of UNESCO, International Union for Conservation of Nature, 2014.
25. McRoy, C.P., Seagrass productivity: carbon uptake experiments in eelgrass, Zostera marina, Aquaculture, 1974, vol. 4, pp. 131-137.
26. Nellemann, C., Corcoran, E., Duarte, C.M., Valdes, L., De Young, C., Fonseca, L., and Grimsditch, G. (eds), Blue Carbon. A Rapid Response Assessment, GRID-Arendal: United Nations Environment Programme, 2009.
27. Ralph, P.J., Tomasko, D., Moore, K., Seddon, S., and Macinnis-Ng, C.M., Human Impacts on Seagrasses: Eutrophication, Sedimentation, and Contamination, in Seagrasses: biology, ecologyand conservation, Springer, Dordrecht, 2007, doi 10.1007/978-1-4020-2983-7_24
28. Sarthou, G., Timmermans, K., Blain, S., and Treguer, P., Growth physiology and fate of diatoms in the ocean: A review, Journal of Sea Research, 2005, vol. 53, pp. 25-42, doi 10.1016/j. seares.2004.01.007
29. Spokes, L.J. and Liss, P.S., Photochemically induced redox reactions in seawater, II. Nitrogen and iodine, Mar. Chem., 1996, vol. 54, nos 1-2, pp. 1-10, doi 10.1016/0304-4203(96)00033-3
30. Thamdrup, B. and Dalsgaard, T., Production of N2 through anaerobic ammonium oxidation coupled to nitrate reduction in marine sediments, Appl. Environ. Microbiol., 2002, vol. 68, no. 3, pp. 1312-1318, doi 10.1128/AEM.68.3.1312-1318.2002
31. Zafiriou, O.C. and True, M.B., Nitrite photolysis in seawater by sunlight, Mar. Chem., 1979, vol. 8, no. 1, pp. 9-32, doi 10.1016/0304-4203(79)90029-X
32. Zafiriou, O.C. and True, M.B., Nitrate photolysis in seawater by sunlight, Mar. Chem., 1979, vol. 8, no. 1, pp. 33-42, doi 10.1016/0304-4203(79)90030-6
33. Zuo, Y. and Deng, Y., The near-UV absorption constants for nitrite ion in aqueous solution, Chemosphere, 1998, vol. 36, no. 1, pp. 181-188, doi 10.1016/S0045-6535(97)10028-5
34. Lotsiya severo-zapadnogo berega Yaponskogo morya. Ot reki Tumannaya do mysa Belkina (Northwestern Sea of Japan Coast Pilot. From the Tumen River to Cape Belkin), St. Petersburg: Gl. Upr. Navig. Okeanogr. Minist. Oborony, 1996, no. 1401.
Review
For citations:
Tishchenko P.Ya., Barabanshchikov Yu.A., Pavlova G.Yu., Ryumina A.A., Sagalaev S.G., Semkin P.Yu., Tishchenko P.P., Ulanova O.A., Shvetsova M.G., Shkirnikova E.M., Tibenko E.Yu. Hydrochemical state of the Uglovoy Bight (Amur Bay) in different seasons. Izvestiya TINRO. 2021;201(1):138-157. (In Russ.) https://doi.org/10.26428/1606-9919-2021-201-138-157