Preview

Известия ТИНРО

Расширенный поиск

Анализ профилей стронция и бария, измеренных методом масс-спектрометрии сверхвысокого разрешения LA-ICP-MS в отолитах молоди анадромной нерки Oncorhynchus nerka в раннеморской период, как косвенного показателя перехода из пресных вод в морские

https://doi.org/10.26428/1606-9919-2021-201-669-685

Полный текст:

Аннотация

Анализируются профили концентраций стронция и бария в отолитах ювенильной нерки Oncorhynchus nerka Британской Колумбии (Канада), определенные методом лазерной масс-спектрометрии с индуктивно-связанной плазмой (LA-ICP-MS). Рассмотрены вариабельность и повторяемость оценок точки перехода лососей в морскую среду по профилям соотношений Sr:Ca и Ba:Ca с максимально возможным (околосуточным) разрешением. Высокая точность анализа химического состава отолитов (по слоям толщиной до 2 мкм) достигнута с применением круговой прорези, ширина которой близка к ширине суточных колец отолитов, что дало возможность проанализировать изменения в элементном составе отолитов при миграции рыбы в морскую среду обитания с точностью в 1–2 дня. Профили стронция в целом были сходны у всех изученных рыб с низкими величинами Sr:Ca в начальный пресноводный период и резким их повышением при переходе в морскую среду. Вариации Ba:Ca были более сложными, с резким ростом перед переходом в соленую воду, кроме того, перед переходом наблюдалось несколько пиков концентрации бария, число которых было разным у рыб разного происхождения. На профиле бария рост концентрации наблюдался на 3–11 мкм раньше, чем на профиле стронция. Сложность профиля бария может привести к ошибке в определении точки перехода в морскую среду, поэтому профиль стронция является более надежным маркером перехода молоди нерки к морскому обитанию.

Об авторах

Ю. Егорова
Университет Британской Колумбии
Канада

Егорова Юлия, аспирант

Ванкувер, Британская Колумбия, V6T 1Z4



Ю. Кузьменко
Университет Британской Колумбии
Канада

Кузьменко Юлия, аспирант

Ванкувер, Британская Колумбия, V6T 1Z4



Т. Спесивый
Университет Британской Колумбии
Канада

Спесивый Тимофей, техник

Ванкувер, Британская Колумбия, V6T 1Z4



Б. Хант
Университет Британской Колумбии; Хакай институт
Канада

Хант Брайан П.В., доцент

Ванкувер, Британская Колумбия, V6T 1Z4
Хериот-Бэй, Британская Колумбия, V0P 1H0



Е. А. Пахомов
Университет Британской Колумбии; Хакай институт
Канада

Пахомов Евгений А., кандидат биологических наук, профессор, директор института

Ванкувер, Британская Колумбия, V6T 1Z4
Хериот-Бэй, Британская Колумбия, V0P 1H0



Список литературы

1. Altenritter, M.E., Cohuo, A. & Walther, B.D., Proportions of demersal fish exposed to sublethal hypoxia revealed by otolith chemistry, Mar. Ecol. Prog. Ser., 2018, vol. 589, pp. 193–208. doi 10.3354/meps12469

2. Arrowsmith, P., Laser ablation of solids for elemental analysis by inductively coupled plasma mass spectrometry, Anal. Chem., 1987, vol. 59, no. 10, pp. 1437–1444. doi 10.1021/ac00137a014

3. Barnes, T.C., Gillanders, B.M., Combined effects of extrinsic and intrinsic factors on otolith chemistry. Implications for environmental reconstructions, Can. J. Fish. Aquat. Sci., 2013, vol. 70, no. 8, pp. 1159–1166. doi 10.1139/cjfas-2012-0442

4. Barnett-Johnson, R., Ramos, F.C., Grimes, C.B., Macfarlane, R.B., Barnett-Johnson, R., Ramos, F.C., Grimes, C.B. & Macfarlane, R.B., Validation of Sr isotopes in otoliths by laser ablation multicollector inductively coupled plasma mass spectrometry (LA-MC-ICPMS): opening avenues in fisheries science applications, Can. J. Fish. Aquat. Sci., 2005, vol. 62, no. 11, pp. 2425–2430. doi 10.1139/f05-194

5. Bath, G.E., Thorrold, S.R., Jones, C.M., Campana, S.E., McLaren, J.W. & Lam, J.W.H., Strontium and barium uptake in aragonitic otoliths of marine fish, Geochim. Cosmochim. Acta, 2000, vol. 64, no. 11, pp. 1705–1714. doi 10.1016/S0016-7037(99)00419-6

6. Beacham, T.D., Candy, J.R., McIntosh, B., MacConnachie, C., Tabata, A., Kaukinen, K., Deng, L., Miller, K.M., Withler, R.E. & Varnavskaya, N., Estimation of stock composition and individual identification of sockeye salmon on a Pacific Rim basis using microsatellite and major histocompatibility complex variation, Trans. Am. Fish. Soc., 2005, vol. 134, no. 5, pp. 1124–1146. doi 10.1577/T05-005.1

7. Björnsson, B.T., Stefansson, S.O. & Mccormick, S.D., Environmental endocrinology of salmon smoltification, Gen. Comp. Endocrinol., 2011, vol. 170, no. 2, pp. 290–298. doi 10.1016/j.ygcen.2010.07.003

8. Braux, E.D., Warren-myers, F., Dempster, T., Fjelldal, P.G., Hansen, T. & Swearer, S.E., Osmotic induction improves batch marking of larval fish otoliths with enriched stable isotopes, ICES J. Mar. Sci., 2014, vol. 71, no. 9, pp. 2530–2538. doi 10.1093/icesjms/fsu091

9. Brophy, D., Danilowicz, B.S. & Jeffries, T.E., The detection of elements in larval otoliths from Atlantic herring using laser ablation ICP-MS, J. Fish Biol., 2003, vol. 63, no. 4, pp. 990–1007. doi 10.1046/j.1095-8649.2003.00223.x

10. Campana, S.E. & Gagné, J.A., Cod discrimination using ICPMS elemental assays of otoliths, in Recent developments in fish otolith research, eds. by D.H. Secor, J.M. Dean and S.E. Campana, Columbia, University of South Carolina Press, 1995, pp. 671–691.

11. Campana, S.E. & Thorrold, S.R., Otoliths, increments, and elements: keys to a comprehensive understanding of fish populations?, Can. J. Fish. Aquat. Sci., 2001, vol. 58, no. 1, pp. 30–38. doi 10.1139/cjfas-58-1-30

12. Campana, S.E., Chemistry and composition of fish otoliths: pathways, mechanisms and applications, Mar. Ecol. Prog. Ser., 1999, vol. 188, pp. 263–297. doi 10.3354/meps188263

13. Chang, M.-Y., Geffen, A.J., Kosler, J., Dundas, S.H. & Maes, G.E., The effect of ablation pattern on LA-ICPMS analysis of otolith element composition in hake, Merluccius merluccius, Environ. Biol. Fish., 2012, vol. 95, no. 4, pp. 509–520. doi 10.1007/s10641-012-0065-7

14. Coffey, M., Dehairs, F., Collette, O., Luther, G., Church, T. & Jickells, T., The Behaviour of Dissolved Barium in Estuaries, Estuarine, Coastal and Shelf Science, 1997, vol. 45, no. 1, pp. 113–121. doi 10.1006/ecss.1996.0157

15. de Vries, M.C., Gillanders, B.M., and Elsdon, T.S., Facilitation of barium uptake into fish otoliths: Influence of strontium concentration and salinity, Geochim. Cosmochim. Acta, 2005, vol. 69, no. 16, pp. 4061–4072. doi 10.1016/j.gca.2005.03.052

16. Denoyer, E.R., Fredeen, K.J. & Hager, J.W., Laser solid sampling for inductively coupled plasma mass spectrometry, Anal. Chem., 1991, vol. 63, no. 8, pp. 445A-457A. doi 10.1021/ac00008a718

17. Dickhoff, W.W., Folmar, L.C. & Gorbman, A., Changes in plasma thyroxine during smoltification of coho salmon, Oncorhynchus kisutch, Gen. Comp. Endocrinol., 1978, vol. 36, no. 2, pp. 229–232. doi 10.1016/0016-6480(78)90027-8

18. Edmonds, J.S., Caputi, N. & Morita, M., Stock discrimination by trace-element analysis of otolith of orange roughly (Hoplostethus atlanticus), a deep-water marine teleost, Aust. J. of Mar. Freshwater Res., 1991, vol. 42, no. 4, pp. 383–389. doi 10.1071/MF9910383

19. Edmonds, J.S., Caputi, N., Moran, M.J., Fletcher, W.J. & Morita, M., Population discrimination by variation in concentrations of minor and trace elements in sagittae of two Western Australian teleost, in Recent Developmants in Fish Otolith Research, ed. by D.H. Secor, J.M. Dean and S.E. Campana, Columbia: University of South Carolina Press, 1995, pp. 655–670.

20. Egorova, Y., Temporal and spatial patterns of outmigration of juvenile sockeye salmon in Rivers Inlet, Vancouver: University of British Columbia, 2016. doi 10.14288/1.0320798

21. Elsdon, T.E. & Gillanders, B.M., Relationship between water and otolith elemental concentrations in juvenile black bream Acanthopagrus butcheri, Mar. Ecol. Prog. Ser., 2003, vol. 260, pp. 263–272.

22. Elsdon, T.S., Wells, B.K., Campana, S.E., Gillanders, B.M., Jones, C.M., Limburg, K.E., Secor, D.H., Thorrold, S.R., and Walther, B.D., Otolith chemistry to describe movements and life-history parameters of fishes: Hypotheses, assumptions, limitations and inferences, Ocean. Mar. Biol., 2008, vol. 46, pp. 297–330.

23. Freshwater, C., Trudel, M., Beacham, T.D., Neville, C.-E., Tucker, S. & Juanes, F., Validation of daily increments and a marine-entry check in the otoliths of sockeye salmon Oncorhynchus nerka post-smolts, J. Fish. Biol., 2015, vol. 87, no. 1, pp. 169–178. doi 10.1111/jfb.12688

24. Gray, A.L., Solid sample introduction by laser ablation for inductively coupled plasma source mass spectrometry, Analyst, 1985, no. 5, pp. 551–556. doi 10.1039/AN9851000551

25. Hale, R. & Swearer, S.E., Otolith microstructural and microchemical changes associated with settlement in the diadromous fish Galaxias maculates, Mar. Ecol. Prog. Ser., 2008, vol. 354, pp. 229–234. doi 10.3354/meps07251

26. Hamer, P., Henderson, A., Hutchison, M., Kemp, J., Green, C. & Feutry, P., Atypical correlation of otolith strontium: calcium and barium : calcium across a marine-freshwater life history transition of a diadromous fish, Mar. Freshw. Res., 2015, vol. 66, no. 5, pp. 411–419. doi 10.1071/MF14001

27. Hoff, G.R. & Fuiman, L.A., Environmentally induced variation in elemental composition of red drum (Sciaenops ocellatus) otoliths, Bull. Mar. Sci., 1995, vol. 56, pp. 578–591.

28. Hoover, R.R. & Jones, C.M., Effect of laser ablation depth in otolith life history scans, Mar. Ecol. Prog. Ser., 2013, vol. 486, pp. 247–256. doi 10.3354/meps10328

29. Huelga-Suarez, G., Fernández, B., Moldovan, M. & Alonso, J.I.G., Detection of transgenerational barium dual-isotope marks in salmon otoliths by means of LA-ICP-MS, Anal. Bioanal. Chem., 2013, vol. 405, no. 9, pp. 2901–2909. doi 10.1007/s00216-012-6452-2

30. Jones, C.M. & Chen, Z., New techniques for sampling larval and juvenile fish otoliths for trace-element analysis with laser-ablation sector-field inductively-coupled-plasma mass spectrometry (SF-ICP-MS ), in The Big Fish Bang, Proceedings of the 26 th Annual Larval Fish Conference, Norway: Institute of Marine Research, 2003, pp. 431–443.

31. Khangaonkar, T., Long, W. & Xu, W., Assessment of circulation and inter-basin transport in the Salish Sea including Johnstone Strait and Discovery Islands pathways, Ocean Modelling, 2017, vol. 109, pp. 11–32. doi 10.1016/j.ocemod.2016.11.004

32. Li, Y.-H. & Han, L.-H., Desorption of Ba and226 Ra from river borne sediments in the Hudson estuary, Earth and Planet. Sci. Lett., 1979, vol. 43, no. 3, pp. 343–350. doi 10.1016/0012-821X(79)90089-X

33. Limburg, K., Otolith strontium traces environmental history of sub-yearling American shad Alosa sapidissima, Mar. Ecol. Prog. Ser., 1995, vol. 119, no. 1/3, pp. 25–35.

34. Macdonald, J.I. & Crook, D.A., Variability in Sr: Ca and Ba: Ca ratios in water and fish otoliths across an estuarine salinity gradient, Mar. Ecol. Prog. Ser., 2010, vol. 413, pp. 147–161. doi 10.3354/meps08703

35. Martin, J., Bareille, G., Berail, S., Pecheyran, C., Daverat, F., Bru, N., Tabouret, H. & Donard, O., Spatial and temporal variations in otolith chemistry and relationships with water chemistry: a useful tool to distinguish Atlantic salmon Salmo salar parr from different natal streams, J. Fish Biol., 2013, vol. 82, no. 5, pp. 1556–1581. doi 10.1111/jfb.12089

36. McCulloch, M., Cappo, M., Aumend, J. & Müller, W., Tracing the life history of individual barramundi using laser ablation MC-ICP-MS Sr-isotopic and Sr/Ba ratios in otoliths, Mar. Freshw. Res., 2005, vol. 56, no. 5, pp. 637–644. doi 10.1071/MF04184

37. McFarlane, C.R.M. & Luo, Y., U-Pb Geochronology Using 193 nm Excimer LA-ICP-MS Optimized for In Situ Accessory Mineral Dating in Thin Sections, Geoscience Canada, 2012, vol. 39, no. 3, pp. 158–172.

38. Miller, J.A. & Simenstad, C.A., Otolith microstructure preparation, analysis, and interpretation: procedures for a potential habitat assessment methodology, Washington, 1994.

39. Muggeo, V., Estimating regression models with unknown break-points, Statistics in Medicine, 2003, vol. 22, no. 19, pp. 3055–3071. doi 10.1002/sim.1545

40. Muggeo, V.M., R., segmented: an R Package to Fit Regression Models with Broken-Line Relationships, R News, 2008, no. 8/1, pp. 20–25.

41. Naydenko, S.V., Temnykh, O.S., & Figurkin, A.L., Is winter the critical period in the marine life history of Pacific salmon?, N. Pac. Anadr. Fish Comm., 2016, no. 6, pp. 139–152. doi 10.23849/npafcb6/139.152

42. Palace, V.P., Halden, N.M., Yang, P., Evans, R.E. & Sterling, G., Determining Residence Patterns of Rainbow Trout Using Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) Analysis of Selenium in Otoliths, Environmental Science and Technology, 2007, vol. 41, no. 10, pp. 3679–3683.

43. Paton, C., Hellstrom, J., Paul, B., Woodhead, J., and Hergt, J., Iolite: freeware for the visualization and processing of mass spectrometric data, J. Anal. At. Spectrom., 2011, vol. 26, no. 11, pp. 2508–2518. doi 10.1039/c1ja10172b

44. Preikshot, D., Beamish, R.J., Sweeting, R.M., Neville, C.M. & Beacham, T.D., The Residence Time of Juvenile Fraser River Sockeye Salmon in the Strait of Georgia, Marine and Coastal Fisheries, 2012, vol. 4, pp. 438–449. doi 10.1080/19425120.2012.683235

45. Quinn, T.P., Volk, E.C. & Hendry, A.P., Natural otolith microstructure patterns reveal precise homing to natal incubation sites by sockeye salmon (Oncorhynchus nerka), Can. J. Zool., 1999, vol. 77, pp. 766–775.

46. Ruggerone, G.T., Volk, E.C., Residence time and growth of natural and hatchery chinook salmon in the Duwamish Estuary and Elliott Bay, Washington, based on otolith chemical and structural attributes. I. Natural Resources Consultants, Seattle, Washington, 2003.

47. Secor, D.H., Rooker, J.R., Is otolith strontium a useful scalar of life cycles in estuarine fishes?, Fish. Res., 2000, vol. 46, no. 1–3, pp. 359–371. doi 10.1016/S0165-7836(00)00159-4

48. Stanley, R.R., Bradbury, I.R., DiBacco, C., Snelgrove, P.V., Thorrold, S.R. & Killen, S.S. Environmentally mediated trends in otolith composition of juvenile Atlantic cod (Gadus morhua), ICES J. Mar. Sci., 2015, vol. 72, no. 8, pp. 2350–2363. doi 10.1093/icesjms/fsv070

49. Stecher, H.A. & Kogut, M.B., Rapid barium removal in the Delaware estuary, Geochim. Cosmochim. Acta, 1999, vol. 63, no. 7–8, pp. 1003–1012. doi 10.1016/S0016-7037(98)00310-X

50. Stocks, A.P., Pakhomov, A.E. & Hunt, B.P.V., A simple method to assess the marine environment residence duration of juvenile sockeye salmon (Onchorhynchus nerka ) using laser ablation, Can. J. Fish. Aquat. Sci., 2014, vol. 71, no. 10, pp. 1437–1446. doi 10.1139/cjfas-2014-0073

51. Stocks, A.P., Transition time from fresh to saltwater of juvenile sockeye salmon (Oncorhynchus nerka) determined by laser ablation ICP-MS of otolith, BSc (Honors), Vancouver: University of British Columbia, 2012.

52. Tabouret, H., Bareille, G., Claverie, F., Pécheyran, C., Prouzet, P. & Donard, O.F.X., Simultaneous use of strontium:calcium and barium:calcium ratios in otoliths as markers of habitat: Application to the European eel (Anguilla anguilla) in the Adour basin, South West France, Mar. Environ. Res., 2010, vol. 70, no. 1, pp. 35–45. doi 10.1016/j.marenvres.2010.02.006

53. Tabouret, H., Lord, C., Bareille, G., Pécheyran, C., Monti, D. & Keith, P., Otolith microchemistry in Sicydium punctatum: indices of environmental condition changes after recruitment, Aquatic Living Resources, 2011, vol. 24, no. 4, pp. 369–378. doi 10.1051/alr/2011137

54. Walther, B.D. & Limburg, K.E., The use of otolith chemistry to characterize diadromous migrations, J. Fish. Biol., 2012, vol. 81, no. 2, pp. 796–825. doi 10.1111/j.1095-8649.2012.03371.x

55. Warter, V. & Müller, W., Daily growth and tidal rhythms in Miocene and modern giant clams revealed via ultra-high resolution LA-ICPMS analysis — A novel methodological approach towards improved sclerochemistry, Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, vol. 465, Part B, pp. 362–375. doi 10.1016/j.palaeo.2016.03.019

56. Wedemeyer, G.A., Saunders, R.L. & Clarke, W.C., Environmental Factors Affecting Smoltification and Early Marine Survival of Anadromous Salmonids, Mar. Fish. Rev., 1980, vol. 42, no. 6, pp. 1–14.

57. Welch, D.W., Porter, A.D., Rechisky, E.L., Challenger, W.C., Hinch, S.G., Critical periods in the marine life history of Pacific Salmon?, NPAFC. Tech. Rep., 2013, no. 9, pp. 179–183.

58. Wells, B.K., Rieman, B.E., Clayton, J.L., Horan, D.L., and Jones, C.M., Relationships between water, otolith, and scale chemistries of west slope cutthroat trout from the Coeur d’Alene River, Idaho: the potential application of hard-part chemistry to describe movements in fresh water, Trans. Am. Fish. Soc., 2003, vol. 132, no. 3, pp. 409–424. doi 10.1577/1548-8659(2003)132<0409:RB-WOAS>2.0.CO;2

59. Yokouchi, K., Fukuda, N., Shirai, K., Aoyama, J., Daverat, F. & Tsukamoto, K., Time lag of the response on the otolith strontium/calcium ratios of the Japanese eel, Anguilla japonica to changes in strontium/calcium ratios of ambient water, Environ. Biol. Fish., 2011, vol. 92, pp. 469–478. doi 10.1007/s10641-011-9864-5


Для цитирования:


Егорова Ю., Кузьменко Ю., Спесивый Т., Хант Б., Пахомов Е.А. Анализ профилей стронция и бария, измеренных методом масс-спектрометрии сверхвысокого разрешения LA-ICP-MS в отолитах молоди анадромной нерки Oncorhynchus nerka в раннеморской период, как косвенного показателя перехода из пресных вод в морские. Известия ТИНРО. 2021;201(3):669-685. https://doi.org/10.26428/1606-9919-2021-201-669-685

For citation:


Egorova Yu., Kuzmenko Yu., Spesivy T., Hunt B.P., Pakhomov E.A. Analysis of Sr and Ba profiles measured by ultra-high-resolution mass spectrometry LA-ICP-MS in otoliths of juvenile anadromous sockeye salmon Oncorhynchus nerka in the early marine life-history stage as a proxy for fresh to marine water transition. Izvestiya TINRO. 2021;201(3):669-685. (In Russ.) https://doi.org/10.26428/1606-9919-2021-201-669-685

Просмотров: 74


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1606-9919 (Print)
ISSN 2658-5510 (Online)