Arsenic content in commercial fish of the Barents Sea (according to long-term data)
https://doi.org/10.26428/1606-9919-2021-201-833-844
Abstract
Total content of arsenic in muscles and liver of the main commercial fish species landed in the Barents Sea, as atlantic cod Gadus morhua, haddock Melanogrammus aeglefinus, long rough dab (american plaice) Hippoglossoides platessoides, greenland halibut Reinhardtius hipoglossoides, and european plaice Pleuronectes platessa is considered on the data collected in 2009–2020. The average As content in the muscles of examined fish met hygienic standards for the permissible concentration, i.e. 5 μg/g of wet weight, but the content in liver was about twice higher. High variability of the total As content in muscles of juveniles and adult fish was observed that imposed excessive restrictions on their sales as food products. Taking into account that the increased content of arsenic in tissues of fish in the Barents Sea has natural origin, these restrictions are not directly related to actual quality of the fish raw materials. There is recommended to account the natural background of As and establish a regional criterion for the allowable concentration of total arsenic in the muscles of fish landed in the Barents Sea as 12 μg/g WW. For principal decision on the safe level of arsenic content in fish products, introduction of a new standard for the level of inorganic arsenic content is recommended, that is more reliable and representative indicator.
About the Authors
M. A. NovikovRussian Federation
Novikov Mikhail A., Ph.D., leading researcher
6, Academic Knipovich Str., Murmansk, 183038
E. A. Gorbacheva
Russian Federation
Gorbacheva Elena А., Ph.D., researcher
6, Academic Knipovich Str., Murmansk, 183038
A. M. Lapteva
Russian Federation
Lapteva Anna M., principal specialist
6, Academic Knipovich Str., Murmansk, 183038
References
1. Albert, A., Izbiratel’naya toksichnost’ (Selective Toxicity), vol. 1, Moscow: Medicina, 1989.
2. Albert, A., Izbiratel’naya toksichnost’ (Selective Toxicity), vol. 2, Moscow: Medicina, 1989.
3. Baturin, G.N., Emel’yanov, E.M., and Stryuk, L.V., On the geochemistry of plankton and suspended solid sediments in the Baltic Sea, Okeanologiya, 1993, vol. 33, no. 1, pp. 126–132.
4. Berestovskij, E.G., Diet and feeding behavior of American plaice Hippoglossoides platessoides limantoides in the Barents and Norwegian Seas, Vopr. Ikhtiol., 1995, vol. 35, no. 1, pp. 94–104.
5. Vinogradov, A.P., Himicheskij elementarnyj sostav organizmov moray (Elemental chemical composition of marine organisms), Moscow: Nauka, 2001.
6. Emelyanov, E.M. and Kravtsov, V.A., Cause of elevated as concentrations in the Baltic Sea and Vistula lagoon, Geohimiya, 2007, no. 8, pp. 871–888.
7. Zhizn’ i usloviya yeye sushchestvovaniya v bentali Barentseva morya (The life and its existence peculiarity in the Barents Sea benthal), Matishov, G.G., ed., Apatity: Kol. fil. KF MMBI AN SSSR, 1986.
8. A study of ecosystems in fishery water areas, collection and processing of data on aquatic biological resources, and techniques and technology for their harvesting and processing, in Instruktsii i metodicheskie rekomendatsii po sboru i obrabotke biologicheskoi informatsii v moryakh Evropeiskogo Severa i Severnoi Atlantiki (Instructions and Methodical Recommendations for the Collection and Processing of Biological Information in the Seas of the European North and North Atlantic), Shevelev, M.S., ed., Moscow: VNIRO, 2004, 2nd ed., no. 1.
9. Kovekovdova, L.T., Kiku, D.P., and Kasyanenko, I.S., Monitoring of the marine environment and safety of fishing grounds in the Far Eastern Fisheries Basin (toxic elements), in Sb. mater. Vseross. nauchno-prakt. konf. mezhdunar. uchastiem, priuroch. k 145-letiyu Sevastopol. biol. stn. “Morskie biologicheskie issledovaniya: dostizheniya i perspektivy” (Collect. Mater. All-Russ. Sci. Pract. Conf. Int. Participation, Commem. 145th Anniv. Sevastopol Biol. Stn. “Marine Biological Research: Achievements and Prospects”), Sevastopol: EKOSI-Gidrofizika, 2016, vol. 3, pp. 111–114.
10. Lakin, G.F., Biometriya (Biometrics), Moscow: Vysshaya Shkola, 1990.
11. Lapteva, A.M., Trace element composition of red king crab (Paralithodes camtschaticus) of the Barents Sea, in Mater. 5 mezhdunar. nauchno-tech. conf. “Aktual’nye problemy osvoeniya biologicheskikh resursov Mirovogo okeana” (Proc. 5th Int. Sci. Tech. Conf. “The Actual Problems of Development of Biological Resources of the World Ocean”), Vladivostok: Dal’rybvtuz, 2016, part 1, pp. 123–127.
12. Lapteva, A.M. and Plotitsyna, N.F., Trace elements in bottom sediments of the Barents Sea on the standard section “Kola Meridian”, Vestn. Murm. Gos. Tekh. Univ., 2017, vol. 20, no. 1–2, pp. 242–251. doi 10.21443/1560-9278-2017-20-1/2-242-251
13. Lapteva, A.M. and Plotitsyna, N.F., Trace elements in the snow crab Chionoecetes opilio of the Barents Sea, in Mater. 10 Nats. (Vseross.) nauchno-prakt. konf. “Prirodnye resursy, ikh sovremennoe sostoyanie, okhrana, promyslovoe i tekhnicheskoe ispol’zovanie” (Proc. 10th Nat. All-Russ. Sci. Pract. Conf. “Natural Resources, Their Current Status, Conservation, and Commercial and Technical Use”), Petropavlovsk-Kamchatsky: Kamchatskii Gos. Tekh. Univ., 2019, pp. 35–39.
14. Morozov, N.P. and Petuhov, S.A., Mikroelementy v promyslovoj ihtiofaune Mirovogo okeana (Microelements in the commercial fish fauna of the World Ocean), Moscow: Agropromizdat, 1986.
15. Mur, J.V. and Ramamurti, S., Tyazhelye metally v prirodnyh vodah: kontrol’ i ocenka vliyaniya (Heavy metals in natural waters: applied monitoring and impact assessment), Moscow: Mir, 1987.
16. Novikov, M.A. and Draganov, D.M., Complex methodical approach to estimation of background levels of microelement content in watermasses of the Barents Sea (Cd, Co, Cu and Ni), Bulletin of the Kamchatka Regional organization training and Scientific Center. Series: Earth sciences, 2017, no. 2(34), pp. 37–48.
17. Hmel’nickij, G.A, Loktionov, V.N., and Poloz, D.D., Veterinarnaya toksikologiya (Veterinary toxicology), Moscow: Agropromizdat, 1987.
18. Chupikova, E.S., Tkachenko, S.A., Borisenko, G.S., Kovekovdova, L.T., and Popkov, A.A., Monitoring safety of Japanese mackerel, in Mater. 2 Nats. nauchno-prakt. konf., posvyashch. 20-letiyu kafedry ekologii morya FGBOU VO “KGMTU” “Aktual’nye problemy bioraznoobraziya i prirodopol’zovaniya” (Proc. 2th Nat. Sci. Prakt. Conf., dedicated 20th anniversary of the Department of Marine Ecology of the Federal State Budgetary Educational Institution of Higher Education “KGMTU” “Actual problems of biodiversity and nature management”), Simferopol’: IT “Arial”, 2019, pp. 248–252.
19. Agah, H., Leermakers, M., Elskens, M., Rez-Fatemi, S.M., and Baeyens, W., Accumulation of trace metals in the muscle and liver tissues of five fish species from the Persian Gulf, Environ Monit Assess, 2009, vol. 157, pp. 499–514. doi 10.1007/s10661-008-0551-8
20. Dopp, E., Hartmann, L.M., Florea, A.-M, von Recklinghausen, U., Pieper, R., Shokouhi, B., Shokouhi, B., Rettenmeier, A.W.,Hirner,A.V., and Obe, G., Uptake of inorganic and organic derivatives of arsenic associated with induced cytotoxic and genotoxic effects in Chinese hamster ovary (CHO) cells, Toxicology Applied Pharmacology, 2004, vol. 201, no. 2, pp. 156–165. doi 10.1016/j.taap.2004.05.017
21. Edmonds, J.S., Francesconi, K.A., Cannon, J.R., Raston, C.L., Skelton, B.W., and White, A.H., Isolation, crystal structure and synthesis of arsenobetaine, the arsenical constituents of the western rock lobster Panulirus longipes cygnus George, Tetrahedron Letters, 1977, vol. 18, no. 18, pp. 1543–1546. doi 10.1016/S0040-4039(01)93098-9
22. Feldman, J. and Krupp, E.M., Critical review or scientific opinion paper: Arsenosugars — a class of benign arsenic species or justification for developing partly speciated arsenic fractionation in foodstuffs?, Anal. Bioanal. Chem, 2011, vol. 399, pp. 1735–1741. doi 10.1007/s00216-010-4303-6
23. Frantzen, S., Maage, A., Duinker, A., Julshamn, K., and Iversen S.A., A baseline study of metals in herring (Clupea harengus) from the Norwegian Sea, with focus on mercury, cadmium, arsenic and lead, Chemosphere, 2015, vol. 127, pp. 164–170. doi 10.1016/j.chemosphere.2015.01.037
24. Geubel, A.P., Mairlot, M.C., Buchet, J.P., Dive, C., and Lauwerys, R., Abnormal methylation capacity in human liver cirrhosis, Int. J. Clin. Pharmacol. Res., 1988, vol. 8, no. 2, pp. 117–122.
25. Julshamn, K., Frantzen, S., Valdersnes, S., Nilsen, B.M., Maage, A., and Nedreaas, K., Concentrations of mercury, arsenic, cadmium and lead in Greenland halibut(Reinhardtius hippoglossoides) caught off the coast of northern Norway, Mar. Biol. Res., 2011, vol. 7, no. 8, pp. 733–745. doi 10.1080/17451000.2011.594893
26. Julshamn, K., Lundebye, A.-K., Heggstad, K., Berntssen, M.H.G., and Boe, B., Norwegian monitoring programme on the inorganic and organic contaminants in fish caught in the Barents Sea, Norwegian Sea and North Sea, 1994–2001, Food Addit. Contam., 2004, vol. 21, no. 4, pp. 365–376. doi 10.1080/02652030310001639512
27. Julshamn, K., Nilsen, B.M., Frantzen, S., Valdersnes, S., Maage, A., Nedreaas, K., and Sloth J.J., Total and inorganic arsenic in fish samples from Norwegian waters, Food Addit. Contam. Part B: Surveillance, 2012, vol. 5, no. 4, pp. 229–235. doi 10.1080/19393210.2012.698312
28. Khairul, I., Wang, Q.Q., Jiang, Y.H., Wang, C., and Naranmandura, H., Metabolism, toxicity and anticancer activities of arsenic compounds, Oncotarget, 2017, vol. 8, no. 14, pp. 23905–23926. doi 10.18632/oncotarget.14733
29. Li, W., Wei, C., Zhang, C., Van Hulle, M., Cornelis, R., and Zhang, X., A survey of arsenic species in chinese seafood, Food Chem. Toxicol., 2003, vol. 41, no. 8, pp. 1103–1110. doi 10.1016/ s0278-6915(03)00063-2
30. Marafante, E., Vahter, M., and Envall, J., The role of the methylation in the detoxication of arsenate in the rabbit, Chem. Biol. Interact., 1985, vol. 56, no. 2–3, pp. 225–238. doi 10.1016/0009-2797(85)90008-0
31. Neff, J.M., Ecotoxicology of arsenic in the marine environment, Environ. Toxicol. Chem., 1997, vol. 16, no. 5, pp. 917‒927. doi 10.1002/etc.5620160511
32. Squibb, K.S. and Fowler, B.A., The toxicity of arsenic and its compounds, Biological and environmental effects of arsenic, Amsterdam: Elsevier, 1983, pp. 233–269.
33. Styblo, M., Del Razo, L.M., Vega, L., Germolec, D.R., LeCluyse E.L., Hamilton, G.A., Reed, W., Wang, C., Cullen, W.R., and Thomas, D.J., Comparative toxicity of trivalent and pentavalent inorganic and methylated arsenicals in rat and human cells, Arch. Toxicol., 2000, vol. 74, no. 6, pp. 289–299. doi 10.1007/s002040000134
34. The Barents Sea: Ecosystem, Resources, Management. Half a Century of Russian-Norwegian Cooperation, Jakobsen, T. and Ozhigin, V.K., ed., Trondheim: Tapir Academic Press, 2011. Zhang, W., Chen, L., Zhou, Y., Wu, Y., and Zhang, L., Biotransformation of inorganic arsenic in a marine herbivorous fish Siganus fuscescens after dietborne exposure, Chemosphere, 2016, vol. 147, pp. 297–304. doi 10.1016/j.chemosphere.2015.12.121
35. Zhang, W., Guo, Z., Zhou, Y., Chen, L., and Zhang, L., Comparative contribution of trophic transfer and biotransformation on arsenobetaine bioaccumulation in two marine fish, Aquat. Toxicol., 2016, vol. 179, pp. 65–71. doi 10.1016/j.aquatox.2016.08.017
36. Zhang, W., Huang, L., and Wang, W.-X., Biotransformation and detoxification of inorganic arsenic in a marine juvenile fish Terapon jarbua after waterborne and dietborne exposure, J. Hazard. Mater., 2012, vol. 221–222, pp. 162–169. doi 10.1016/j.jhazmat. 2012.04.027
37. Evaluation of certain food additives and contaminants: 33rd Report of the Joint FAO/WHO Expert Committee on Food Additives, Tech. Rep. Ser. 776, Geneva, 1989.
38. EFSA Panel on Contaminants in the Food Chain (CONTAM); Scientific Opinion on Arsenic in Food, EFSA J., 2009, vol. 7, no. 10, 1351. doi 10.2903/j.efsa.2009.1351
Review
For citations:
Novikov M.A., Gorbacheva E.A., Lapteva A.M. Arsenic content in commercial fish of the Barents Sea (according to long-term data). Izvestiya TINRO. 2021;201(4):833-844. (In Russ.) https://doi.org/10.26428/1606-9919-2021-201-833-844