Preview

Izvestiya TINRO

Advanced search

On application of Kalman filters in cohort models

https://doi.org/10.26428/1606-9919-2022-202-601-622

Abstract

On example of walleye pollock at East Kamchatka, one of possible approaches is considered to assess the state of stocks for marine commercial species with usage of the data on age structure in catches. Algorithms for suboptimal filtering and interpolation (extended Kalman smoother and unscented Kalman smoother) are presented for a cohort model of an exploited stock, in presence of uncertainty about true value of the vector of the system parameters.

About the Author

O. I. Ilin
Kamchatka branch of VNIRO (KamchatNIRO)
Russian Federation

Oleg I. Ilin, Ph.D., leading researcher

18, Naberezhnaya Street, Petropavlovsk-Kamchatsky, 683000



References

1. Aoki, M., Optimizatsiya stokhasticheskikh sistem (Optimization of stochastic systems), Moscow: FIZMATLIT, 1971.

2. Varkentin, A.I., Malykh, K.M., and Ilyin, O.I., Some data on the selectivity of the fishery walleye pollock in mid-water trawls in the north-eastern part of the Sea of Okhotsk, pacific waters adjacent to Kamchatka and the northern Kuril Islands, Vopr. Rybolov., 2021, vol. 22, no. 2, pp. 93–109. doi 10.36038/0234-2774-2021-22-2-93-109

3. Varkentin, A.I., Sergeeva, N.P., Ilyin O.I., and Ovsyannikov E.E., Walleye pollock (Gadus chalcogrammus, Pallas, 1814) fishery, size and age composition, state of stocks and catch prospects in the waters adjacent to Kamchatka peninsula and Northern Kuril Islands, Issled. Vodn. Biol. Resur. Kamchatki Sev.-Zapadn. Chasti Tikhogo Okeana, 2021, vol. 60, pp. 5–42. doi 10.15853/2072-8212.2021.60.5-42

4. Ilyin, O.I., Varkentin, A.I., and Smirnov, A.V., On one model approach to assessment of state for the stock of walleye pollock Theragra chalcogramma in the northern Okhotsk Sea, Izv. Tikhookean. Nauchno-Issled. Inst. Rybn. Khoz. Okeanogr., 2016, vol. 186, pp. 107–117. doi 10.26428/1606-9919-2016-186-107-117

5. Ilyin, O.I., Sergeeva, N.P., and Varkentin, A.I., Estimation of reserves and forecasting of TAC of East Kamchatka pollock (Theragra chalcogramma) based on a precautionary approach, Tr. Vses. Nauchno-Issled. Inst. Rybn. Khoz. Okeanogr., 2014, vol. 151, pp. 62–74.

6. Sage, E. and Mels, J., Teoriya otsenki i yeye primeneniye v svyazi i upravlenii (Theory of evaluation and its application in communication and management), Moscow: Svyazʹ, 1976.

7. Sinitsyn, I.N., Filʹtry Kalmana i Pugacheva (Kalman and Pugachev Filters), Moscow: Universitetskaya kniga, Logos, 2006.

8. Aanes, S. and Pennington, M., On estimating the age composition of the commercial catch of Northeast Arctic cod from a sample of clusters, ICES J. Mar. Sci., 2003, vol. 60, no. 2, pp. 297–303. doi 10.1016/s1054-3139(03)00008-0

9. Aeberhard, W.H., Flemming, J.M., and Nielsen, A., Review of State-Space Models for Fisheries Science, Annual Review of Statistics and Its Application, 2018, vol. 5, no. 1, pp.215–235. doi 10.1146/annurev-statistics-031017-100427

10. Berg, C.W. and Nielsen, A., Accounting for correlated observations in an age-based state-space stock assessment model, ICES J. Mar. Sci., 2016, vol. 73, no. 7, pp. 1788–1797. doi 10.1093/icesjms/fsw046

11. Berg, C.W., Nielsen, A., and Kristensen, K., Evaluation of alternative age-based method for estimating relative abundance from survey data in relation to assessment models, Fish. Res., 2013, vol. 151, pp. 91–99. doi 10.1016/j.fishres.2013.10.005

12. Bull, B., Francis, R.I.C.C., Dunn, A., McKenzie, A., Gilbert, D.J., Smith, M.H., Bian, R., and Fu, D., CASAL (C++ algorithmic stock assessment laboratory): CASAL User Manual v2.30-2012/03/21, NIWA Tech. Rep. 135, Wellington, 2012.

13. Cadigan, N.G., A state-space stock assessment model for northern cod, including under-reported catches and variable natural mortality rates, Can. J. Fish. Aquat. Sci., 2016, vol. 73, no. 2, pp. 296–308. doi 10.1139/cjfas-2015-0047

14. Deriso, R.B., Quinn, T.J., and Neal, P.R., Catch-age analysis with auxiliary information, Can. J. Fish. Aquat. Sci., 1985, vol. 42, pp. 815–824.

15. Doubleday, W.G., A Least Squares Approach to analyzing catch at age data, ICNAF, Res. Bull., 1976, no. 12, pp. 69–81.

16. Fournier, D. and Archibald, C.P., A general theory for analyzing catch at age data, Can. J. Fish. Aquat. Sci., 1982, vol. 39, pp. 1195–1203.

17. Fournier, D.A., Hampton, J., and Sibert, J.R., MULTIFAN-CL: a length-based, age-structured model for fisheries stock assessment, with application to South Pacific albacore, Thunnus alalunga, Can. J. Fish. Aquat. Sci., 1998, vol. 55, no. 9, pp. 2105–2116.

18. Fournier, D.A., Skaug, H.J., Ancheta, J., Sibert, J., Ianelli, J., Magnusson, A., Maunder, M.N., and Nielsen, A., AD Model Builder: using automatic differentiation for statistical inference of highly parameterized complex nonlinear models, Optimization Methods and Software, 2012, vol. 27, no. 2, pp. 233–249. doi 10.1080/10556788.2011.597854

19. Francis, R.C., Replacing the multinomial in stock assessment models: A first step, Fish. Res., 2014, vol. 151, pp. 70–84. doi 10.1016/j.fishres.2013.12.015

20. Grewal, M.S. and Andrews, A.P., Kalman Filtering: Theory and Practice, NewJersey: Prentice-Hall, 1993.

21. Gudmundsson, G. Time series analysis of catch-at-age observations, J. Royal Statis. Society: Ser. C (Applied Statistics), 1994, vol. 43, no. 1, pp. 117–126. doi 10.2307/2986116

22. Gudmundsson, G. and Gunnlaugsson, T., Selection and estimation of sequential catch-at-age models, Can. J. Fish. Aquat. Sci., 2012, vol. 69, no. 11, pp. 1760–1772.

23. Gulland, J.A., Manual of methods for fish assessment. Part. 1. Fish population analysis, FAO Man. Fish. Sci., 1969, no. 4.

24. Hilborn, R., Maunder, M.N., Parma, A., Ernst, B., Paynes, J., and Starr, P.J., Documentation for a general age-structured Bayesian stock assessment model: code named Coleraine, Seattle, Washington: Fisheries Research Institute, University of Washington, 2000. (FRI/UW 00/01).

25. Hrafnkelsson, B. and Stefánsson, G., A model for categorical length data from groundfish surveys, Can. J. Fish. Aquat. Sci., 2004, vol. 61, no. 7, pp. 1135–1142. doi 10.1139/f04-049

26. Julier, S.J., Uhlmann, J.K., and Durrant-Whyte, H., A new approach for filtering nonlinear systems, in Proc. of the “American Control Conference”, Seattle, 1995, pp. 1628–1632.

27. Kristensen, K., Nielsen, A., Berg, C.W., Skaug, H., and Bell, B.M., TMB: automatic differentiation and laplace approximation, Journal of Statistical Software, 2016, vol. 70, no. 5, pp. 1–21. doi 10.18637/jss.v070.i05

28. Laurec, A. and Shepherd, J.G., On the analysis of catch and effort data, J. Cons. Int. Explor. Mer., 1983, vol. 41, pp. 81–84.

29. Maunder, M.N. and Punt A.E., A review of integrated analysis in fisheries stock assessment, Fish. Res., 2013, vol. 142, pp. 61–4. doi 10.1016/j.fishres.2012.07.025

30. McAllister, M.K. and Ianelli, J.N., Bayesian stock assessment using catch-age data and the sampling/importance resampling algorithm, Can. J. Fish. Aquat. Sci., 1997, vol. 54, no. 2, pp. 284–300. doi 10.1139/f96-285

31. Methot, R.D., Synthesis model: an adaptable framework for analysis of diverse stock assessment data, International North Pacific Fisheries commission, 1990, vol. 50, pp. 259–277.

32. Methot, R.D. and Wetzel, C.R., Stock synthesis: a biological and statistical frame-work for fish stock assessment and fishery management, Fish. Res., 2013, vol. 142, pp. 86–99.

33. Nielsen, A. and Berg, C.W., Estimation of time-varying selectivity in stock assessments using state-space models, Fish. Res., 2014, vol. 158, pp. 96–101.

34. Nielsen, A., Hintzen, N.T., Mosegaard, H., Trijoulet, V., and Berg, C.W., Multi-fleet state-space assessment model strengthens confidence in single-fleet SAM and provides fleet-specific forecast options, ICES J. Mar. Sci., 2021, vol. 78, no. 6, pp. 2043–2052. doi10.1093/icesjms/fsab078

35. Patterson, K.R., Technical reference for the Integrated Catch-at-Age Programmes, Version 1.2, SOAFD Marine Laboratory, Aberdeen, 1994.

36. Perreault, A.M.J., Wheeland, L.J., Morgan, M.J., and Cadigan, N.G., A state-space stock assessment model for American plaice on the Grand Bank of Newfoundlan, J. Northw. Atl. Fish. Sci., 2020, vol. 51, pp. 45–104. doi 10.2960/J.v51.m727

37. Pope, J.G., An investigation of the accuracy of Virtual Population Analysis using cohort analysis, ICNAF Res. Bull., 1972, no. 9, pp. 65–74.

38. Pope, J.G. and Shepherd, J.G., A simple method for consistent interpretation of catch-at-age data, J. Cons. Cons. Int. Explor. Mer., 1982, vol. 40, pp. 176–184.

39. Särkkä, S. and Hartikainen, J., On Gaussian Optimal Smoothing of Non-Linear State Space Models, IEEE Transactions on Automatic Control, 2010, vol. 55, no. 8, pp. 1938–1941. doi 10.1109/TAC.2010.2050017

40. Vasilyev, D.A. and Kizner, Z.I., Instantaneous Separable VPA (ISVPA), ICES J. Mar. Sci., 1997, vol. 54, no. 3, pp. 399–411.


Review

For citations:


Ilin O.I. On application of Kalman filters in cohort models. Izvestiya TINRO. 2022;202(3):601-622. (In Russ.) https://doi.org/10.26428/1606-9919-2022-202-601-622

Views: 394


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1606-9919 (Print)
ISSN 2658-5510 (Online)