Preview

Izvestiya TINRO

Advanced search

Standardization of catch per unite effort for chub mackerel Scomber japonicus in the waters at Kuril Islands

https://doi.org/10.26428/1606-9919-2022-202-850-860

Abstract

Chub mackerel became an important object of Russian fishery in the NorthWest Pacific since 2015. Annual catch of the species by Russian fleet reached 87,388 t in 2021. The data of trawl catches by Russian fishing vessels in the national waters in autumn of 2015–2021 are considered for possibility of CPUE standardization taking into account the factors of fishing gear and environments. Generalized additive models (GAM) were used as the method, the best model was chosen using the information criteria of Akaike and Schwarz. The selected model explains 63% of dispersion and includes such predictors as coordinates of catch, date of catch, vessel length, engine power, number of fishing vessels, and SST. Influence of these factors on CPUE is interpreted and discussed.

About the Authors

E. P. Chernienko
Pacific branch of VNIRO (TINRO)
Russian Federation

Emilia P. Chernienko - leading specialist

690091, Vladivostok, Shevchenko Alley, 4



I. S. Chernienko
Pacific branch of VNIRO (TINRO)
Russian Federation

Igor S. Chernienko - Ph.D., leading researcher

690091, Vladivostok, Shevchenko Alley, 4



References

1. Bakanev, S.V., Standardization of the red king crab fishery efficiency in the Russian part in the Barents Sea in 2010–2018 using generalized linear model, Vopr. Rybolov., 2019, vol. 20, no. 3, pp. 363–373.

2. Buyanovsky, A.I., Use of fishery statistics to correct estimates of stocks of snow crab opilio in the seas of Russia, Vopr. Rybolov., 2020, vol. 21, no. 1, pp. 106–124.

3. Buyanovskiy, A.I., Use of fisheries statistics for the tanner crab stock dynamics, Vopr. Rybolov., 2019, vol. 20, no. 4, pp. 497–512.

4. Kruchinin, O.N., Mizyurkin, M.A., Zakharov, E.A., Volotov, V.M., Shabelsky, D.L., and Vakker, N.L., Fleet operations at fishing of japanese sardine and chub mackerel in the kuril waters in the modern period of high abundance of these species, Izv. Tikhookean. Nauchno-Issled. Inst. Rybn. Khoz. Okeanogr., 2022, vol. 202, no. 2, pp. 414–428. doi:10.26428/1606-9919-2022-202-414-428

5. Kulik, V.V., Varkentin, A.I., and Ilyin, O.I., Standardization of CPUE for walleye pollock in the Okhotsk Sea with inclusion of some environmental factors, Izv. Tikhookean. Nauchno-Issled. Inst. Rybn. Khoz. Okeanogr., 2020, vol. 200, no. 4, pp. 819–836. doi:10.26428/1606-9919-2020-200-819-836

6. Medik, V.A., Tokmachev, M.S., and Fishman, B.B., Statistika v meditsine i biologii (Statistics in medicine and biology), Moscow: Meditsina, 2000, vol. 1.

7. Pyrkov, V.N., Solodilov, A.V., and Degaj, A.Yu., Development and implementation of new satellite techniques in the fishery monitoring system, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2015, vol. 12, no. 5, pp. 251–262.

8. Chernienko, I.S., Standardization of landing efficiency for opilio crab in the western Bering Sea by using of generalized additive models, Izv. Tikhookean. Nauchno-Issled. Inst. Rybn. Khoz. Okeanogr., 2021, vol. 201, no. 2, pp. 359–370. doi:10.26428/1606-9919-2021-201-359-370

9. Auger-Méthé, M., Field, C., Albertsen, C.M., Derocher, A.E., Lewis, M.A., Jonsen, I.D., and Flemming, J.M., State-space models’ dirty little secrets: even simple linear Gaussian models can have estimation problems, Sci. Rep., 2016, vol. 6, no. 1, pp. 1–10. doi:10.1038/srep26677

10. Battaile, B.C. and Quinn II., T.J., Catch per unit effort standardization of the eastern Bering Sea walleye pollock (Theragra chalcogramma) fleet, Fish. Res., 2004, vol. 70, no. 2–3, pp. 161–177. doi:10.1016/j.fishres.2004.08.029

11. Burnham, K.P. and Anderson, D.R., Model selection and multimodel inference: a practical information-theoretic approach, New York: Springer, 2002, 2<sup>nd</sup> ed.

12. Chernienko, I.S. and Chernienko, E.P., Standardized CPUE for Chub mackerel (Scomber japonicus) caught by Russian pelagic trawl fishery in 2015–2021, NPFC-2022-TWG CMSA05-WP03, Tokyo, 2022.

13. Chin, T.M., Vazquez-Cuervo, J., and Armstrong, E.M., A multi-scale high-resolution analysis of global sea surface temperature, Remote Sens. Environ., 2017, vol. 200, no. 7, pp. 154–169. doi:10.1016/j.rse.2017.07.029

14. Hastie, T. and Tibshirani, R., Generalized Additive Models, Wiley StatsRef: Statistics Reference Online, 2014. doi:10.1002/9781118445112.stat03141

15. Hilborn, R. and Walters, C.J., Quantitative Fisheries Stock Assessment: Choice, Dynamics, and Uncertainty, New York: Chapman and Hall, 1992.

16. Jørgensen, B., The Theory of Dispersion Models: Monogr. Stat. Appl. Probab. (Book 76), London: Chapman and Hall, 1997.

17. Kulik, V.V., CPUE standardization for the Pacific chub mackerel historical catch in the Northwest Pacific Ocean, NPFC-2017-TWG CMSA01-WP02, Tokyo, 2017.

18. Maunder, M.N. and Punt, A.E., Standardizing catch and effort data: a review of recent approaches, Fish. Res., 2004, vol. 70, no. 2–3, pp. 141–159. doi:10.1016/j.fishres.2004.08.002

19. Newman, K.B., Buckland, S.T., Morgan, B.J.T., King, R., Borchers, D.L., Cole, D.J., Besbeas, P., Gimenez, O., and Thomas, L., Modelling population dynamics: model formulation, fitting and assessment using state-space methods, New York: Springer, 2014.

20. Quinn II, T.J. and Deriso, R.B., Quantitative Fish Dynamics, New York: Oxford Univ. Press, 1999.

21. Wickham, H., ggplot2: Elegant Graphics for Data Analysis, New York, 2016, 2<sup>nd</sup> ed.

22. Wood, S.N., Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models, J. R. Statist. Soc. B (Statistical Methodology), 2011, vol. 73, no. 1, pp. 3–36. doi:10.1111/j.1467-9868.2010.00749.x

23. Wood, S.N., Generalized Additive Models: An Introduction with R, New York: Chapman and Hall/CRC, 2017, second edition. doi:10.1201/9781315370279.

24. Wood, S.N., Stable and Efficient Multiple Smoothing Parameter Estimation for Generalized Additive Models, J. Am. Stat. Assoc., 2004, vol. 99, no. 467, pp. 673–686. doi:10.1198/016214504000000980

25. Wood, S.N., Thin plate regression splines, J. R. Statist. Soc. B (Statistical Methodology), 2003, vol. 65, no. 1, pp. 95–114. doi:10.1111/1467-9868.00374

26. The GEBCO_2020 version. http://www.gebco.net. Cited September 1, 2022.

27. R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, 2022, version 4.1.3. https://www.R-project.org/. Cited January 27, 2022.

28. Hijmans, R.J., raster: Geographic Data Analysis and Modeling, 2021. https://rdrr.io/cran/raster/. Cited January 27, 2022.

29. Bivand, R. and Lewin-Koh, N., maptools: tools for handling spatial objects, 2020. https://CRAN.R-project.org/package=maptools. Cited January 27, 2022.

30. Hijmans, R.J., geosphere: Spherical Trigonometry, 2021. https://cran.r-project.org/web/packages/geosphere/geosphere.pdf. Cited January 27, 2022.


Review

For citations:


Chernienko E.P., Chernienko I.S. Standardization of catch per unite effort for chub mackerel Scomber japonicus in the waters at Kuril Islands. Izvestiya TINRO. 2022;202(4):850-860. (In Russ.) https://doi.org/10.26428/1606-9919-2022-202-850-860

Views: 285


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1606-9919 (Print)
ISSN 2658-5510 (Online)