Preview

Izvestiya TINRO

Advanced search

A method for assessing chemical contamination of bottom sediments using bioassay approach

https://doi.org/10.26428/1606-9919-2022-202-861-879

Abstract

A method for assessing the degree of marine pollution (TPFchem) is developed using a bioassay approach. The index TPFbio is calculated as the average coordinate of the optima of response curves (along the TPFchem gradient) known for the taxa of macrozoobenthos found at each station. The scale for correspondence between TPFchem and TPFbio is determined, separately for the fine-grained bottom sediments (with more than 10–12 % of particles < 0.05 mm) and for the sediments with lower portion of fine particles. Any list of species can be processed. Besides the assessing the level of chemical pollution, the method allows to correct results of chemical assessments and to restore dynamics of anthropogenic impact or to trace accumulation of pollutants at the seashore. However, reliable results of this method can be guaranteed for the coastal waters of Vladivostok only.

About the Authors

A. V. Moshchenko
Far-Eastern Regional Hydrometeorological Research Institute
Russian Federation

Alexander V. Moshchenko - D.Biol., leading researcher

690091, Vladivostok, Fontannaya St., 24



T. A. Belan
Far-Eastern Regional Hydrometeorological Research Institute
Russian Federation

Tatyana A. Belan - Ph.D., leading researcher

690091, Vladivostok, Fontannaya St., 24



B. M. Borisov
Far-Eastern Regional Hydrometeorological Research Institute
Russian Federation

Boris M. Borisov - researcher

690091, Vladivostok, Fontannaya St., 24



References

1. Aksentov, K.I., Mercury in Abiotic components of the Peter-the-Great Bay ecosystem, in Sovremennoe sostoyanie i tendencii izmeneniya prirodnoi sredy zaliva Petra Velikogo Yaponskogo morya (Current Environmental condition and tendencies of its change in the Peter the Great Bay, the Sea of Japan), Moscow: GEOS, 2008, pp. 173–184.

2. Borovikov, V.P. and Borovikov, I.P., STATISTICA. Statisticheskii analiz i obrabotka dannykh v srede Windows (STATISTICA. Statistical Analysis and Data Processing in the Windows Environment), Moscow: Filin, 1998.

3. Deryugin, K.M. and Somova, N.M., Contributions to quantitative estimate of the benthonic population of Peter the Great Bay (Sea of Japan), Issled. Dal’nevost. morey SSSR, 1941, no. 1, pp. 13–36.

4. Likht, F.R., Astakhov, A.S., Botsul, A.I., Derkachev, A.N., Dudarev, O.V., Markov, Yu.D., and Utkin, I.V., Struktura osadkov i fraktsii Yaponskogo morya (Structure of sediments and facies of the Sea of Japan), Vladivostok: Dal’nevos. Nauchn. Tsentr Akad. Nauk SSSR, 1983.

5. Mastitsky, S.E. and Shitikov, V.K., Statisticheskii analiz i visualizatsiya dannykx s pomoshch’yu R (Statistical Analysis and Data Visualization with R), Khaidelberg; London; Tolyatti: 2014. http://ranalytics.blogspot.com. Cited January, 25, 2022.

6. Moshchenko, A.V., Rol mikromasshtabnoi nurbulentnosti v raspredelenii i izmenchivosti bentosnykh zhivotnykh (The part of microscale turbulence in distribution and variability of benthic animals),Vladivostok: Dal’nauka, 2006.

7. Moshchenko, A.V. and Belan, T.A., Method for the appraisal of anthropogenic disturbance of macrozoobenthic communities of soft substrata, Russ. J. Mar. Biol., 2008, vol. 34, no. 4, pp. 235–248.

8. Moshchenko, A.V. and Belan, T.A., New methods of assessment of ecological condition of the natural environment in the Far Eastern seas of Russia, in Dinamika morskikh ekosistem i sovremennye problemy sokhraneniya biologicheskogo potentsiala morei Rossii (Dynamics of Marine Ecosystems and the Current Problems of Conservation of the Biological Potential of the Russian Seas), Vladivostok: Dal’nauka, 2007, pp. 276–313.

9. Moshchenko, A.V., Belan, T.A., Borisov, B.M., Lishavskaya, T.S., and Sevastianov, A.V., Modern contamination of bottom sediments and ecological state of macrozoobenthos in the coastal zone at Vladivostok (Peter the Great Bay, Japan Sea), Izv. Tikhookean. Nauchno-Issled. Inst. Rybn. Khoz. Okeanogr., 2019, vol. 196, pp. 155–181. doi:10.26428/1606-9919-2019-196-155-181

10. Moshchenko, A.V., Belan, T.A., and Borisov, B.M., Distribution and classification of macrozoobenthos in Peter the Great Bay of Japan Sea in relation to contamination of bottom sediments, Izv. Tikhookean. Nauchno-Issled. Inst. Rybn. Khoz. Okeanogr., 2022, vol. 202, no. 3, pp. 623–639. doi:10.26428/1606-9919-2022-202-623-639

11. Moshchenko, A.V., Belan, T.A., Lishavskaya, T.S., Sevastianov, A.V., and Borisov, B.M., Main tendencies of temporal changes for concentration of priority pollutants in sediments of the coastal areas at Vladivostok (Peter the Great Bay, Japan Sea), Izv. Tikhookean. Nauchno-Issled. Inst. Rybn. Khoz. Okeanogr., 2021, vol. 201, no. 2, pp. 440–457. doi:10.26428/1606-9919-2021-201-440-457

12. Moshchenko, A.V., Belan, T.A., Borisov, B.M., Lishavskaya, T.S., and Sevastyanov, A.V., Adaptation of the method of appraisal of marine environment quality using biological data analysis at the base of AMBI and M-AMBI indices for Peter the Great Bay (Sea of Japan), Tr. Dal’nevost. Nauchno-Issled. Gidrometeorol. Inst., 2021, vol. 156, pp. 142–181.

13. Polyakov, D.M., Accumulation of heavy metals by bottom sediments in Amursky Bay (Sea of Japan), in Sovremennoe sostoyanie i tendencii izmeneniya prirodnoi sredy zaliva Petra Velikogo Yaponskogo morya (Current Environmental condition and tendencies of its change in the Peter the Great Bay, the Sea of Japan), Moscow: GEOS, 2008, pp. 163–173.

14. Protasov, A.A., Bioraznoobrazie i ego otsenka. Kontseptualnaya diversikologiya (Biodiversity and its assessment. Conceptual diversicology), Kiev: Akademperiodika, 2002.

15. Schornikov, E.I. and Zenina, M.A., Ostrakody kak indikatory sostoyaniya i dinamiki vodnykh ekosistem (na primere zaliva Petra Velikogo Yaponskogo morya) (Ostracods as Indicators of Conditions and Dynamics of Water Ecosystems (on the Example of Peter the Great Bay, Sea of Japan)), Vladivostok: Dalnauka, 2014.

16. Belan, T.A. and Moshchenko, A.V., Polychaete taxocenes variability associated with sediment pollution loading in the Peter the Great Bay (the East Sea/Japan Sea), Ocean Sci. J., 2005, vol. 40, no. 1, pp. 1–10.

17. Borja, A., Dauer, D., Dıaz, R., Llanso, R.J., Muxika, I., Rodrıguez, J.G., and Schaffner, L., Assessing estuarine benthic quality conditions in Chesapeake Bay: A comparison of three indices, Ecological Indicators, 2008, vol. 8, no. 4, pp. 395–403.

18. Borja, Á., Franco, J., and Perez, V., A Marine Biotic Index to Establish the Ecological Quality of Soft-Bottom Benthos Within European Estuarine and Coastal Environments, Mar. Pollut. Bull., 2000, vol. 40, no. 12, pp. 1100–1114.

19. Borja, A., Josefson, A.B., Miles, A., Muxika, I., Olsgard, F., Phillips, G., Rodrıguez, G., and Rygg, B., An approach to the intercalibration of benthic ecological status assessment in the North Atlantic ecoregion, according to the European Water Framework Directive, Mar. Pollut. Bull., 2007, vol. 55, no. 1–6, pp. 42–52.

20. Borja, Á., Mader, J., and Muxika, I., Instructions for the use of the AMBI index software (Version 5.0), Revista de Investigacion Marina, 2012, vol. 19, no. 3, pp. 71–82.

21. Mee, L.D., Jefferson, R.L., Laffoley, D.dʼA., and Elliott, M., How good is good? Human values and Europe’s proposed Marine Strategy Directive, Mar. Pollut. Bull., 2008, vol. 56, no. 2, pp. 187–204. doi:10.1016/j.marpolbul.2007.09.038

22. Moshchenko, A.V., Belan, T.A., and Oleynik, E.V., Influence of contamination on soft-bottom communities in Peter the Great Bay, Sea of Japan: choice of variables, Ecological studies and the state of the ecosystem of Amursky Bay and the estuarine zone of the Razdolnaya River (Sea of Japan), Vladivostok: Dalnauka, 2009, vol. 2, pp. 173–204.

23. Muxika, I., Borja, Á., and Bald, J., Using historical data, expert judgement and multivariate analysis in assessing reference conditions and benthic ecological status, according to the European Water Framework Directive, Mar. Pollut. Bull., 2007, vol. 55, nos. 1–6, pp. 16–29. doi:10.1016/j.marpolbul.2006.05.025

24. Ponti, M., Vadrucci, M.R., Orfanidis, S., and Pinna, M., Biotic indices for ecological status of transitional water ecosystems, Transit. Waters Bull., 2009, vol. 3, no. 3, pp. 32–90. doi:10.1285/i1825229Xv3n3p32

25. Rygg, B., Distribution of species along pollution-induced diversity gradients in benthic communities in Norwegian fjords, Mar. Pollut. Bull., 1985, vol. 16, no. 12, pp. 469–474. doi:10.1016/0025-326X(85)90378-9

26. Simboura, N. and Reizopoulou, S., An intercalibration of classification metrics of benthic macroinvertebrates in coastal and transitional ecosystems of the Eastern Mediterranean ecoregion (Greece), Mar. Pollut. Bull., 2008., vol. 56, no. 1, pp. 116–126. doi:10.1016/j.marpolbul.2007.09.042

27. Van Hoey, G., Borja, A., Birchenough, S., Buhl-Mortensen, L., Degraer, S., Fleischer, D., Kerckhof, F., Magni, P., Muxika, I., Reiss, H., Schröder, A., and Zettler, M.L., The use of benthic indicators in Europe: From the Water Framework Directive to the Marine Strategy Framework Directive, Mar. Pollut. Bull., 2010, vol. 60, no. 12, pp. 2187–2196. doi:10.1016/j.marpolbul.2010.09.015

28. Van Loon, W.M.G.M., Boon, A.R., Gittenberger, A., Walvoort, D.J.J., Lavaleye, M., Duineveld, G.C.A., and Verschoor, A.J., Application of the Benthic Ecosystem Quality Index 2 to benthos in Dutch transitional and coastal waters, J. Sea Res., 2015, vol. 103, pp. 1–13. doi:10.1016/j.seares.2015.05.002

29. Warwick, R.M. and Clarke, K.R., New “biodiversity” measures reveal a decrease in taxonomic distinctness with increasing stress, Mar. Ecol. Prog. Ser., 1995, vol. 129, pp. 301–305.

30. Washington, H.G., Diversity, biotic and similarity indices. A review with special relevance to aquatic ecosystems, Water Res., 1984, vol. 18, no. 6, pp. 653–694. doi:10.1016/0043-1354(84)90164-7

31. Veríssimo, H., Netoa, J.M., Teixeira, H., Franco, J.N., Fath, B.D., Marques, J.C., and Patrício, J., Ability of benthic indicators to assess ecological quality in estuaries following management, 2011, https://www.researchgate.net/publication/236033738. Cited October, 10, 2022.

32. /60/EC. Water Framework Directive, 2000. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex:32000L0060. Cited January, 25, 2022.

33. /56/EC. Marine Strategy Framework Directive, 2008. https://eur-lex.europa.eu/legalcontent/EN/TXT/?uri=CELEX%3A32008L0056. Cited January, 25, 2022.

34. Otchet Nauchno-Issled. Rab. “Sistematizirovannyye dannyye po faktoram sredy i obshchim kharakteristikam soobshchestv makrozoobentosa” (Res. Rep. “Systematized data on environmental factors and general characteristics of macrozoobenthos communities”), Available from DVNIGMI, 2021, Vladivostok, no. GR AAAA-A20-120042190045-6. http://ferhri.ru/images/stories/FERHRI/NIR/Otchety/otchet_4.6.2_2021_moschenko.pdf. Cited October 10, 2022.

35. Chatzidimitriou, K., Fitting a sigmoid curve in R, 2012. https://kyrcha.info/2012/07/08/tutorials-fitting-a-sigmoid-function-in-r. Cited October 10, 2022.

36. Otchet Nauchno-Issled. Rab. “Predlozheniya po ustanovleniyu granichnykh kriteriyev dlya otsenki klassov sostoyaniya morskoy sredy na baze odnogo ili kompleksa biologicheskikh parametrov s uchetom peredovogo mezhdunarodnogo opyta” (Res. Rep. “Proposals for establishing boundary criteria for assessing the state of the marine environment on the basis of one or a set of biological parameters, taking into account international best practices”), 2020. http://ferhri.ru/images/stories/FERHRI/NIR/Otchety/otchet_462_moschenko.pdf. Cited January, 25, 2022.


Review

For citations:


Moshchenko A.V., Belan T.A., Borisov B.M. A method for assessing chemical contamination of bottom sediments using bioassay approach. Izvestiya TINRO. 2022;202(4):861-879. (In Russ.) https://doi.org/10.26428/1606-9919-2022-202-861-879

Views: 295


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1606-9919 (Print)
ISSN 2658-5510 (Online)