Characteristics of sulfated glycosaminoglycans in the cartilage tissue of skate and sturgeon
https://doi.org/10.26428/1606-9919-2022-202-946-956
Abstract
Sulfated glycosaminoglycans (GAGs) or chondroitin sulfates were obtained from the cartilage tissue of skate (indefinite species) and sturgeon (kaluga) under the processes of hydrothermal treatment of raw materials at 50 оC, then hydrolysis with proteolytic enzyme in 4 hours under temperature 45 оC (hydromodulus 1 : 1), then sequential precipitation of GAGs in 2–3 volumes of 96о ethyl alcohol and salting out with 2 % sodium chloride solution. The content of hexosamines and sulfated GAGs was determined in the extracted samples. GAGs of both skate and sturgeon have a high content of sulfated forms, comparable to commercial preparations, that opens up prospects for development of technology for production of monocomponent biologically active additives of chondroprotective action from the wastes of skates and sturgeons processing.
Keywords
About the Authors
A. I. ChepkasovaRussian Federation
Anna I. Chepkasova - Ph.D., leading specialist
690091, Vladivostok, Shevchenko Alley, 4
T. N. Slutskaya
Russian Federation
Tatiana N. Slutskaya - D.Tech., professor, principal researcher
690091, Vladivostok, Shevchenko Alley, 4
E. P. Karaulova
Russian Federation
Ekaterina P. Karaulova - Ph.D., leading researcher
690091, Vladivostok, Shevchenko Alley, 4
References
1. Garmashov, S.Yu., The choice of optimal conditions of enzymatic hydrolysis of collagencontaining raw materials, Vestn. KrasGAU, 2018, no. 3, pp. 268–273.
2. Panasvuk, A.F. and Larionov, E.V., Chondroitin sulfates and their role in the metabolism of chondrocytes and the intercellular matrix of cartilage, Nauchno-prakticheskaya revmatologiya, 2000, no. 2, pp. 46–55.
3. Vasyukov, S.E., Kiryanov, N.A., Lukina, I.V., Shulgin, A.A., and Zhivotov, G.P., Pat. RU 2061485, Method for isolating chondroitin sulfate from animal tissues, Izobret., Polezn. Modeli, 1996.
4. Karlina, A.E., Chepkasova, A.I., Slutskaya, T.N., Yakush, E.V., Kuznetsov, Yu.N., and Bocharov, L.N., Pat. RU 2623738, Biologically active additive from marine hydrobionts — a source of chondroitin sulfate and a method for its preparation, Izobret., Polezn. Modeli, 2017.
5. Pentin, Yu.A. and Vilkov, L.V., Fizicheskiye metody issledovaniya v khimii (Physical research methods in chemistry), Moscow: Mir, 2003.
6. Sorokoumov, I.M., Ezhova, E.A., Bykova, V.M., Nemtsev, S.V., Schmidt, E.A., and Albulov, A.I., Chondroitin sulfate from fish cartilage, Rybprom, 2007, no. 3, pp. 18–22.
7. Sukhoverkhova, G.Yu., Biochemical characteristics of the cartilaginous tissue of aquatic organisms and the technology of dietary supplements for food, Extended Abstract of Cand. Sci. (Tech.) Dissertation, Vladivostok, 2006.
8. Khabieva, A.Yu., Pharmacokinetic study of various dosage forms of chondroitin sulfate, Extended Abstract of Cand. Sci. (Pharm) Dissertation, Moscow, 2007.
9. Abdallah, M.M., Fernandez, N., Matias, A.A., and Bronze, M.D.R., Hyaluronic acid and Chondroitin sulfate from marine and terrestrial sources: Extraction and purification methods, Carbohydr. Polym., 2020, vol. 243, 116441. doi:10.1016/j.carbpol.2020.116441
10. Campo, G.M., Avenoso, A., Campo, S., Ferlazzo, A.M., Micali, C., Zanghí, L., and Calatron, A., Hyaluronic acid and chondroitin-4-sulphate treatment reduces damage in carbon tetrachloride-induced acute rat liver injury, Life Sci., 2004, vol. 74, no. 10, pp. 1289–1305. doi:10.1016/j.lfs.2003.08.010
11. Elson, L.A. and Morgan, W.T.J., A colorimetric method for the determination of glucosamine and chondrosamine, Biochem. J., 1933, vol. 27, pp. 1824–1933.
12. Farndale, R.W., Buttle, D.J., and Barrett, A.J., Improved quantitation and discrimination of sulphated glycosaminoglycans by use of dimethylmethylene blue, Biochim. Biophys. Acta, 1986, vol. 883, no. 2, pp. 173–177.
13. Gold, E.W., A simple spectrophotometric method for estimating glycosarninoglycan concentrations, Anal. Biochem., 1979, vol. 99, pp. 183–188.
14. Gui, M., Song, J., Zhang, L., Wang, Sh., Wu, R., Ma, Ch., and Li, P., Chemical characteristics and antithrombotic effect of chondroitin sulfates from sturgeon skull and sturgeon backbone, Carbohydr. Polym., 2015, vol. 123, pp. 454–460. doi:10.1016/j.carbpol.2015.01.046
15. Im, A.R., Park, Y., and Kim, Y.S., Isolation and characterization of chondroitin sulfates from sturgeon (Acipenser sinensis) and their effects on growth of fibroblasts, Biol. Pharm. Bull., 2010, vol. 33, no. 8, pp. 1268–1273. doi:10.1248/bpb.33.1268
16. Immers, J. and Vasseur, E., Influence of sugars and amines on the colorimetric hexosamine method of Elson and Morgan and its possible climination, Nature, 1950, vol. 165, pp. 898–899.
17. Jang, J.H., Hia, H.C., Ike, M., Inoue, C., Fujita, M., and Yoshida, T., Acid hydrolysis and quantitative determination of total hexosamines of an exopolysaccharide produced by Citrobacter sp., Biotechnol. Lett., 2005, vol. 27, pp. 13–18. doi:10.1007/s10529-004-6305-y
18. Jo, J.-H., Park, D.-Ch., Do, J.-R., Kim, Yo.-M., Kim, D.-S., Park, Yo.-K., Lee, T.-K., and Cho, S.-M., Optimization of Skate (Raja flavirostris) Cartilage Hydrolysis for the Preparation of Chondroitin Sulfate, Food Sci. Biotechnol., 2004, vol. 13, no. 5, pp. 622–626.
19. Jo, J.-H., Do, J.-R., Kim, Y.-M., and Kim, D.-S., Optimization of shark (Squatina oculata) cartilage hydrolysis for the preparation of chondroitin sulfate, The Food Science and Biotechnology, 2005, vol. 14, no. 5, pp. 651–655.
20. Krichen, F., Volpi, N., Sila, A., Maccari, F., Mantovani, V., Galeotti, F., Ellouz-Chaabouni, S., and Bougate, A., Purification, structural characterization and antiproliferative properties of chondroitinsulfate/dermatansulfate from Tunisian fish skins, Intern. Journ. Biological Macromolecules, 2017, vol. 95, pp. 32–39. doi:10.1016/j.ijbiomac.2016.10.108
21. Lauder, R., Chondroitin sulphate: A complex molecule with potential impacts on a wide range of biological systems, Complementary Therapies in Medicine, 2009, vol. 17, no. 1, pp. 56–62. doi:10.1016/j.ctim.2008.08.004
22. Lin, N., Mo, X., Yang, Y., and Zhang, H., Purification and sequence characterization of chondroitin sulfate and dermatan sulfate from fishes, Glycoconjugate Journ., 2017, vol. 34, no. 2, pp. 241–253. doi:10.1007/s10719-016-9759-y
23. Maccari, F., Galeotti, F., and Volpi, N., Isolation and structural characterization of chondroitin sulfate from bony fishes, Carbohydr. Polym., 2015, vol. 129, pp. 143–147. doi:10.1016/j.carbpol.2015.04.059
24. Martins, R.C.L., Werneck, C.C., Rocha, L.A.G., Feres-Filho, E.J., and Silva, L.C.F., Molecular size distribution analysis of human gingival glycosaminoglycans in cyclosporin and nifedipine induced overgrowths, J. Periodont. Res., 2003, vol. 38, pp. 182–189. doi:10.1034/j.1600-0765.2003.02004.x
25. Medeiros, G.F., Mendes, A., Castro, R.A.B., Bau, E.C., Nader, H.B., and Dietrich, C.P., Distribution of sulfated glycosaminoglycans in the animal kingdom: widespread occurrence of heparinlike compounds in invertebrates, Biochim. Biophys. Acta, 2000, vol. 1475, pp. 287–294. doi:10.1016/s0304-4165(00)00079-9
26. Panagos, Ch.G., Thomson, D., Moss, C., Bavington, Ch.D., Ólafsson, H.G., and Uhrín, D., Characterisation of hyaluronic acid and chondroitin/dermatan sulfate from the lumpsucker fish, C. lumpus, Carbohydr. Polym., 2014, vol. 106, pp. 25–33. doi:10.1016/j.carbpol.2014.01.090
27. Reginster, J.-Y., Dudler, J., Blicharski, T., and Pavelka, K., Pharmaceutical-grade Chondroitin sulfate is as effective as celecoxib and superior to placebo in symptomatic knee osteoarthritis: the ChONdroitin versus CElecoxib versus Placebo Trial (CONCEPT), Ann. Rheum. Dis., 2017, vol. 76, no. 9, pp. 1537–1543. doi:10.1136/annrheumdis-2016-210860
28. Silva, T.H., Alves, A., Ferreira, B.M., Oliveira, J.M., Reys, L.L., Ferreira, R.J.F., Sousa, R.A., Silva, S.S., Mano, J.F., and Reis, R.L., Materials of marine origin: a review on polymers and ceramics of biomedical interest, Int. Mater. Rev., 2012, vol. 57, no. 5, pp. 276–306. doi:10.1179/1743280412Y.0000000002
29. Stone, J.E., Akhtar, N., Botchway, S., and Pennock, C.A., Interaction of 1,9-dimethylmethylene blue with glycosaminoglycans, Ann. Clin. Biochem., 1994, no. 31, pp. 147–152. doi:10.1177/000456329403100206
30. Sundaresan, G., Abraham, R.J.J., Appa Rao, V., Babu, R.N., Govind, V., and Meti, M.F., Established method of chondroitin sulphate extraction from buffalo (Bubalus bubalis) cartilages and its identification by FTIR, J. Food Sci. Technol., 2018, vol. 55, no. 9, pp. 3439–3445. doi:10.1007/s13197-018-3253-4
31. Tadashi, E., Patent W0/2004/039994, Sodium chondroitin sulfate, chondroitin-sulfate-containing material and processes for producing the same, 2004.
32. Theocharis, D.A., Papageorgacopoulou, N., Vynios, D.H., Anagnostides, S.Th., and Tsiganos, C.P., Determination and structural characterisation of dermatan sulfate in the presence of other galactosaminoglycans, J. Chromatogr. B Biomed. Sci. Appl., 2001, vol. 754, no. 2, pp. 297–309. doi:10.1016/s0378-4347(00)00624-1
33. Uebelhart, D., Malaise, M., Marcolongo, R., DeVathaire, F., Piperno, M., Mailleux, E., Fioravanti, A., Matoso, L., and Vignon, E., Intermittent treatment of knee osteoarthritis with oral chondroitin sulfate: a one-year, randomized, double-blind, multicenter study versus placebo, Osteoarthritis Cartilage, 2004, vol. 12, no. 4, pp. 269–276. doi:10.1016/j.joca.2004.01.004
34. Volpi, N., Chondroitin sulfate: structure, role and pharmacological activity, San Diego: Elsevier, 2006.
35. Volpi, N., Fractionation of heparin, dermatan sulfate, and chondroitin sulfate by sequential precipitation: A method to purify a single glycosaminoglycan species from a mixture, Anal. Biochem., 1994, vol. 218, no. 2, pp. 382–391. doi:10.1006/abio.1994.1196
36. Volpi, N., Purification of heparin, dermatan sulfate and chondroitin sulfate from mixtures by sequential precipitation with various organic solvents, J. Chromatogr. B Biomed. Sci. Appl., 1996, vol. 685, no. 1, pp. 27–34. doi:10.1016/0378-4347(96)00154-5
37. Werneck, C.C., Oliveira dos Santos, A.J., Silva, L.C.F., Villa-Verde, D.M.S., Savino, W., and Mourão, P.A.S., Is there a glycosaminoglycan related heterogeneity of the thymic epithelium?, J. Cell. Physiol., 2000, vol. 185, pp. 68–79.
Review
For citations:
Chepkasova A.I., Slutskaya T.N., Karaulova E.P. Characteristics of sulfated glycosaminoglycans in the cartilage tissue of skate and sturgeon. Izvestiya TINRO. 2022;202(4):946-956. (In Russ.) https://doi.org/10.26428/1606-9919-2022-202-946-956