Preview

Известия ТИНРО

Расширенный поиск

Микроэлементы (As, Cd, Pb, Fe, Cu, Zn, Se, Hg) в промысловых ракообразных Японского моря

https://doi.org/10.26428/1606-9919-2017-189-147-155

Полный текст:

Аннотация

Определены уровни концентраций элементов в промысловых ракообразных Chionoecetes opilio, Paralithodes camtschaticus, Pandalus borealis, P. hypsinotus, Sclerocrangon salebrosa из Японского моря. Расположение элементов в мягких тканях ракообразных в порядке убывания концентраций имеет следующий вид: Zn > Fe > As > Cu > Se > Cd ~ ~ Pb ~ Hg. Выделены особенности микроэлементного состава исследованных организмов. Отмечен повышенный уровень содержания меди в тканях ракообразных, что обусловлено ролью меди в процессах тканевого дыхания и формировании экзоскелета. Показано сходство микроэлементного состава мышечных тканей креветок и крабов. Выявлено превышение предельно допустимых уровней As в 17,5 % проанализированных особей P. borealis , в 33,3 % - P. hypsinotus , в 17,0 % - C. opilio , в 68,0 % - P. camtschaticus , в 35,5 % - S. salebrosa.

Об авторах

Ирина Сергеевна Наревич
Тихоокеанский научно-исследовательский рыбохозяйственный центр
Россия


Лидия Тихоновна Ковековдова
Тихоокеанский научно-исследовательский рыбохозяйственный центр
Россия


Список литературы

1. Виноградов А.П. Химический элементарный состав организмов моря : моногр. - М. : Наука, 2001. - 620 с.

2. Ковековдова Л.Т. Микроэлементы в морских промысловых объектах Дальнего Востока России : автореф. дис. … д-ра биол. наук. - Владивосток : ТИНРО-центр, 2011. - 39 с.

3. Ковековдова Л.Т., Кику Д.П., Касьяненко И.С. Мониторинг содержания металлов и мышьяка в промысловых рыбах и морской воде дальневосточных морей // Рыб. хоз-во. - 2015. - № 2. - С. 18-24.

4. Andreae M.O. Distribution and speciation of arsenic in natural waters and some marine algae // Deep-Sea Res. - 1978. - Vol. 25. - P. 391-402.

5. Aposhian H.V., Zakharyan R.A., Avram M.D. et al. Oxidation and detoxification of trivalent arsenic species // Toxicol. Appl. Pharmacol. - 2003. - Vol. 193(1). - P. 1-8.

6. Baldwin S., Maher W., Kleber E., Krikowa F. Selenium in marine organisms of seagrass habitats (Posidonia australis) of Jervis Bay, Australia // Mar. Pollut. Bull. - 1996. - Vol. 32, № 3. - P. 310-316.

7. Bergey L.L., Weis J.S. Molting as a mechanism of depuration of metals in the fiddler crab, Uca pugnax // Mar. Environ. Res. - 2007. - Vol. 64, Iss. 5. - P. 556-562.

8. Borak J., Hosgood H.D. Seafood arsenic: Implications for human risk assessment // Regul. Toxicol. Pharmacol. - 2007. - Vol. 47(2). - P. 204-212.

9. Burger J., Dixon C., Shukla T. et al. Metal levels in horseshoe crabs (Limulus polyphemus) from Maine to Florida // Environ. Res. - 2002. - Vol. 90(3). - P. 227-236.

10. Cullen W.R., Reimer K.J. Arsenic speciation in the environment // Chem. Rev. - 1989. - Vol. 89(4). - P. 713-764.

11. Edmonds J.S., Francesconi K.A. The origin of arsenobetaine in marine animals // Appl. Organomet. Chem. - 1988. - Vol. 2, Iss. 4. - P. 297-302.

12. Edmonds J.S., Francesconi K.A., Cannon J.R. et al. Isolation, crystal structure and synthesis of arsenobetaine, the arsenical constituents of the western rock lobster Panurillus longipes cygnus George // Tetrahedron Lett. - 1977. - Vol. 18(18). - P. 1543-1546.

13. Engel D.W. Metal regulation and molting in the blue crab, Callinectes sapidus: copper, zinc, and metallothionein // Biol. Bull. - 1987. - Vol. 172, № 1. - P. 69-82.

14. Francesconi K.A. and Edmonds J.S. Arsenic species in marine samples // Croac. Chem. Acta. - 1998. - Vol. 71(2). - P. 343-359.

15. Francesconi K.A., Edmonds J.S. Biotransformation of arsenic in the marine environment // Arsenic in the Environment. Part 1: Cycling and Characterization. - 1994. - Vol. 5. - P. 221-261.

16. Hagerman L. Haemocyanin concentration of juvenile lobsters (Homarus gammarus) in relation to moulting cycle and feeding conditions // Mar. Biol. - 1983. - Vol. 77(1). - P. 11-17.

17. Hanaoka K., Yamamoto H., Kawashima K. et al. Ubiquity of arsenobetaine in marine animals and degradation of arsenobetaine by sedimentary microorganisms // Appl. Organomet. Chem. - 1988. - Vol. 2, Iss. 4. - P. 371-376.

18. Keteles K.A., Fleeger J.W. The contribution of ecdysis to the fate of copper, zinc and cadmium in grass shrimp, Palaemonetes pugio Holthius // Mar. Pollut. Bull. - 2001. - Vol. 42(12). - P. 1397-1402.

19. Mohapatra A., Rautray T.R., Patra A.K. et al. Trace element-based food value evaluation in soft and hard shelled mud crabs // Food Chem. Toxicol. - 2009. - Vol. 47(11). - P. 2730-2734.

20. Nesnow S., Roop B.C., Lambert G. et al. DNA damage induced by methylated trivalent arsenicals is mediated by reactive oxygen species // Chem. Res. Toxicol. - 2002. - Vol. 15(12). - P. 1627-1634.

21. Terwilliger N.B. Hemolymph proteins and molting in crustaceans and insects // Amer. Zool. - 1999. - Vol. 39, Iss. 3. - P. 589-599.

22. Weeks J.M., Rainbow P.S., Moore P.G. The loss, uptake and tissue distribution of copper and zinc during the moult cycle in an ecological series of tilitrid amphipods (Crustacea: Amphipoda) // Hydrobiologia. - 1992. - Vol. 245, Iss. 1. - P. 15-25.


Для цитирования:


Наревич И.С., Ковековдова Л.Т. Микроэлементы (As, Cd, Pb, Fe, Cu, Zn, Se, Hg) в промысловых ракообразных Японского моря. Известия ТИНРО. 2017;189:147-155. https://doi.org/10.26428/1606-9919-2017-189-147-155

For citation:


Narevich I.S., Kovekovdova L.T. Microelements (As, Cd, Pb, Fe, Cu, Zn, Se, Hg) in commercial crustaceans in the Japan Sea. Izvestiya TINRO. 2017;189:147-155. (In Russ.) https://doi.org/10.26428/1606-9919-2017-189-147-155

Просмотров: 32


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1606-9919 (Print)
ISSN 2658-5510 (Online)