Preview

Известия ТИНРО

Расширенный поиск

Применение анализа микроэлементного состава кальцинированных структур рыб для решения фундаментальных и прикладных научных задач: обзор

https://doi.org/10.26428/1606-9919-2020-200-688-729

Полный текст:

Аннотация

Настоящий обзор посвящен описанию метода микрохимического анализа кальцинированных структур рыб. Метод является современным способом определения происхождения рыб, а также онтогенетических реконструкций условий их обитания, что используется для решения разноплановых задач, таких как выделение единиц запаса в смешанной выборке, оценка путей миграций рыб, выявление районов, значимых для воспроизводства, нагула или зимовки, дифференциация особей заводского и естественного происхождения, анализ роста, идентификация возраста. Основа метода — анализ динамики элементного состава от центра к периферии кальцинированной структуры либо точечная оценка концентрации химических элементов и их изотопов в определенных участках исследуемого образца. Для анализа наиболее часто используют отолиты, элементы скелета либо чешую рыб, а также статолиты миног, клюв и статолиты головоногих. Описана специфика метода микрохимического анализа кальцинированных структур рыб с примерами его использования для решения разноплановых задач фундаментальной и прикладной науки. Сделан вывод о возможности применения метода в комплексных исследованиях водных биологических ресурсов бассейна р. Амур.

Об авторах

П. Б. Михеев
Хабаровский филиал ВНИРО (ХабаровскНИРО)
Россия

Михеев Павел Борисович, кандидат биологических наук, ведущий научный сотрудник

680038, г. Хабаровск, Амурский бульвар, 13а



Т. А. Шеина
Пермский государственный национальный исследовательский университет; Естественнонаучный институт Пермского государственного национального исследовательского университета
Россия

Шеина Татьяна Александровна, кандидат биологических наук, старший преподаватель, инженер Естественнонаучного института

614990, г. Пермь, ул. Букирева, 15, 

614990, г. Пермь, ул. Генкеля, 4



Список литературы

1. Афанасьев Ю.И., Юрина Н.А., Котовский Е.Ф. Гистология : моногр. — 5-е изд., перераб. и доп. — М. : Медицина, 2002. — 744 с.

2. Бабаян В.К. Предосторожный подход к оценке общего допустимого улова (ОДУ). Анализ и рекомендации по применению : моногр. — М. : ВНИРО, 2000. — 192 с.

3. Бивертон Р., Холт С. Динамика численности промысловых рыб : моногр. — М. : Пищ. пром-сть, 1969. — 248 с.

4. Дементьева Т.Ф. Биологическое обоснование промысловых прогнозов : моногр. — М. : Пищ. пром-сть, 1976. — 240 с.

5. Мякишев М.С., Иванова М.А., Зеленников О.В. К вопросу о мечении молоди тихоокеанских лососей и эффективности работы рыбоводных заводов // Биол. моря. — 2019. — Т. 45, № 5. — С. 342–348. DOI: 10.1134/S0134347519050085.

6. Павлов Д.С., Кузищин К.В., Груздева М.А. и др. Разнообразие жизненной стратегии мальмы Salvelinus malma (Walbaum) (Salmonidae, Salmoniformes) Камчатки: онтогенетические реконструкции по данным рентгенофлуоресцентного анализа микроэлементного состава регистрирующих структур // Докл. РАН. — 2013. — Т. 450, № 2. — С. 240–244. DOI: 10.7868/S0869565213150267.

7. Павлов Д.С., Самойлов К.Ю., Кузищин К.В. и др. Разнообразие жизненных стратегий судака Sander lucioperca (L.) Нижней Волги (по данным анализа микроэлементного состава отолитов) // Биол. внутр. вод. — 2016. — № 4. — С. 45–53. DOI: 10.7868/S0320965216040112.

8. Рикер У.Е. Методы оценки и интерпретация биологических показателей популяций рыб : моногр. — М. : Пищ. пром-сть, 1979. — 408 с. (Пер. с англ.)

9. Adelir-Alves J., Daros F.A.L.M., Spach H.L. et al. Otoliths as a tool to study reef fish population structure from coastal islands of south Brazil // Mar. Biol. Res. — 2018. — Vol. 14, № 9–10. — P. 973–988. DOI: 10.1080/17451000.2019.1572194.

10. Adey E.A., Black K.D., Sawyer T. et al. Scale microchemistry as a tool to investigate the origin of wild and farmed Salmo salar // Mar. Ecol. Prog. Ser. — 2009. — Vol. 390. — P. 225–235. DOI: 10.3354/meps08161.

11. Allen P.J., Hobbs J.A., Cech J.J. et al. Using trace elements in pectoral fin rays to assess life history movements in sturgeon: Estimating age at initial seawater entry in Klamath River green sturgeon // Transact. Amer. Fish. Soc. — 2009. — Vol. 138, Iss. 2. — P. 240–250. DOI: 10.1577/T08-061.1.

12. Alò D., Correa C., Samaniego H. et al. Otolith microchemistry and diadromy in Patagonian river fishes // Peer J. — 2019. — Vol. 7. DOI: 10.7717/peerj.6149.

13. Amano Y., Kuwahara M., Takahashi T. et al. Low-fidelity homing behaviour of Biwa salmon Oncorhynchus sp. landlocked in Lake Biwa as inferred from otolith elemental and Sr isotopic compositions // Fish. Sci. — 2018. — Vol. 84. — P. 799–813. DOI: 10.1007/s12562-018-1220-7.

14. Andronis C., Evans N.J., McDonald B.J. et al. Otolith microchemistry: Insights into bioavailable pollutants in a man-made, urban inlet // Mar. Pollut. Bull. — 2017. — Vol. 118, Iss. 1–2. — P. 382–387. DOI: 10.1016/j.marpolbul.2017.02.037.

15. Arai T., Chino N. Opportunistic migration and habitat use of the giant mottled eel Anguilla marmorata (Teleostei: Elopomorpha) // Sci. Rep. — 2018. — Vol. 8. DOI: 10.1038/s41598-018-24011-z.

16. Arai T., Hirata T., Takagi Y. Application of laser ablation ICPMS to trace the environmental history of chum salmon Oncorhynchus keta // Mar. Environ. Res. — 2007. — Vol. 63, Iss. 1. — P. 55–66. DOI: 10.1016/j.marenvres.2006.06.003.

17. Arai T., Levin A.V., Boltunov A.N., Miyazaki N. Migratory history of the Russian sturgeon Acipenser guldenstadti in the Caspian Sea, as revealed by pectoral fin spine Sr:Ca ratios // Mar. Biol. — 2002. — Vol. 141, Iss. 2. — P. 315–319. DOI: 10.1007/s00227-002-0820-y

18. Araya M., Niklitschek E.J., Secor D.H., Piccoli P.M. Partial migration in introduced wild chinook salmon (Oncorhynchus tshawytscha) of southern Chile // Estuarine, Coastal and Shelf Science. — 2014. — Vol. 149. — P. 87–95. DOI: 10.1016/j.ecss.2014.07.011.

19. Arechavala-Lopez P., Milosevic-Gonzalez M., Sanchez-Jerez P. Using trace elements in otoliths to discriminate between wild and farmed European sea bass (Dicentrarchus labrax L.) and Gilthead sea bream (Sparus aurata L.) // Intern. Aquat. Res. — 2016. — Vol. 8. — P. 263–273. DOI: 10.1007/s40071-016-0142-1.

20. Arkhipkin A.I., Campana S.E., FitzGerald J., Thorrold S.R. Spatial and temporal variation in elemental signatures of statoliths from the Patagonian longfin squid (Loligo gahi) // Can. J. Fish. Aquat. Sci. — 2004. — Vol. 61. — P. 1212–1224. DOI: 10.1139/F04-075.

21. Arslan Z., Secor D.H. Analysis of trace transition elements and heavy metals in fish otoliths as tracers of habitat use by American eels in the Hudson River estuary // Estuaries and Coasts. — 2005. — Vol. 28, № 3. — P. 382–393. DOI: 10.1007/bf02693921.

22. Artetxe-Arrate I., Fraile I., Crook D.A. et al. Otolith microchemistry: a useful tool for investigating stock structure of yellowfin tuna (Thunnus albacares) in the Indian Ocean // Mar. Freshwater Res. — 2019. — Vol. 70, Iss. 12. — P. 1708–1721. DOI: 10.1071/MF19067.

23. Avigliano E., Carvalho B., Velasco G. et al. Nursery areas and connectivity of the adults anadromous catfish (Genidens barbus) revealed by otolith-core microchemistry in the south-western Atlantic Ocean // Mar. Freshwater Res. — 2016. — Vol. 68, Iss. 5. — P. 931–940. DOI: 10.1071/MF16058.

24. Avigliano E., Domanico A., Sánchez S., Volpedo A.V. Otolith elemental fingerprint and scale and otolith morphometry in Prochilodus lineatus provide identification of natal nurseries // Fish. Res. — 2017a. — Vol. 186. — P. 1–10. DOI: 10.1016/j.fishres.2016.07.026.

25. Avigliano E., Maichak de Carvalho B., Leisen M. et al. Otolith edge fingerprints as approach for stock identification of Genidens barbus // Estuarine, Coastal and Shelf Science. — 2017b. — Vol. 197. — P. 92–96. DOI: 10.1016/j.ecss.2017.06.008.

26. Avigliano E., Maichak de Carvalho B., Miller N. et al. Fin spine chemistry as a non-lethal alternative to otoliths for stock discrimination in an endangered catfish species // Mar. Ecol. Prog. Ser. — 2019. — Vol. 614. — P. 147–157. DOI: 10.3354/meps12895.

27. Avigliano E., Martínez G., Stoessel L. et al. Otoliths as indicators for fish behaviour and procurement strategies of hunter-gatherers in North Patagonia // Heliyon. — 2020. — Vol. 6, Iss. 3. DOI: 10.1016/j.heliyon.2020.e03438.

28. Avigliano E., Pisonero J., Dománico A. et al. Spatial segregation and connectivity in young and adult stages of Megaleporinus obtusidens inferred from otolith elemental signatures: Implications for management // Fish. Res. — 2018a. — Vol. 204. — P. 239–244. DOI: 10.1016/j.fishres.2018.03.007.

29. Avigliano E., Pisonero J., Sánchez S. et al. Estimating contributions from nursery areas to fish stocks in freshwater systems using otolith fingerprints: The case of the streaked prochilod in the La Plata Basin (South America) // River Res. Applic. — 2018b. — Vol. 34, Iss. 7. — P. 863–872. DOI: 10.1002/rra.3304.

30. Avigliano E., Velasco G., Volpedo A.V. Use of lapillus otolith microchemistry as an indicator of the habitat of Genidens barbus from different estuarine environments in the southwestern Atlantic Ocean // Environ. Biol. Fish. — 2015. — Vol. 98. — P. 1623–1632. DOI: 10.1007/s10641-015-0387-3.

31. Barton D.P., Taillebois L., Taylor J. et al. Stock structure of Lethrinus laticaudis (Lethrinidae) across northern Australia determined using genetics, otolith microchemistry and parasite assemblage composition // Mar. Freshwater Res. — 2018. — Vol. 69, Iss. 4. — P. 487–501. DOI: 10.1071/MF17087.

32. Beck A.J., Charette M.A., Cochran J.K. et al. Dissolved strontium in the subterranean estuary — Implications for the marine strontium isotope budget // Geochimica et Cosmochimica Acta. — 2013. — Vol. 117. — P. 33–52. DOI: 10.1016/j.gca.2013.03.021.

33. Benjamin J.R., Wetzel L.A., Martens K.D. et al. Spatio-temporal variability in movement, age, and growth of mountain whitefish (Prosopium williamsoni) in a river network based upon PIT tagging and otolith chemistry // Can. J. Fish. Aquat. Sci. — 2014. — Vol. 71, № 1. — P. 131–140. DOI: 10.1139/cjfas-2013-0279.

34. Bertucci T., Aguilera O., Vasconcelos C. et al. Late Holocene palaeotemperatures and palaeoenvironments in the Southeastern Brazilian coast inferred from otolith geochemistry // Palaeogeography, Palaeoclimatology, Palaeoecology. — 2018. — Vol. 503. — P. 40–50. DOI: 10.1016/j.palaeo.2018.04.030.

35. Bijvelds M.J., Flik G., Kolar Z.I., Bonga S.E.W. Uptake, distribution and excretion of magnesium in Oreochromis mossambicus: dependence on magnesium in diet and water // Fish Physiol. Biochem. — 1996. — Vol. 15, Iss. 4. — P. 287–298. DOI: 10.1007/BF02112355.

36. Bilton H.T. Factors influencing the formation of scale characters // North Pacific Fish Comm. Bull. — 1975. — Vol. 32. — P. 102–108.

37. Biolé F.G., Thompson G.A., Vargas C.V. et al. Fish stocks of Urophycis brasiliensis revealed by otolith fingerprint and shape in the Southwestern Atlantic Ocean // Estuarine, Coastal and Shelf Science. — 2019. — Vol. 229. DOI: 10.1016/j.ecss.2019.106406.

38. Blair J.M., Hicks B.J. Otolith microchemistry of koi carp in the Waikato region, New Zealand: a tool for identifying recruitment locations? // Inland Waters. — 2012. — Vol. 2, Iss. 3. — P. 109–118. DOI: 10.5268/IW-2.3.480.

39. Bouchoucha M., Pecheyran C., Gonzalez J.L. et al. Otolith fingerprints as natural tags to identify juvenile fish life in ports // Estuarine, Coastal and Shelf Science. — 2018. — Vol. 212. — P. 210–218. DOI: 10.1016/j.ecss.2018.07.008.

40. Bradbury I.R., Campana S.E., Bentzen P. Otolith elemental composition and adult tagging reveal spawning site fidelity and estuarine dependency in rainbow smelt // Mar. Ecol. Prog. Ser. — 2008. — Vol. 368. — P. 255–268. DOI: 10.3354/meps07583.

41. Brennan S.R., Schindler D.E. Linking otolith microchemistry and dendritic isoscapes to map heterogeneous production of fish across river basins // Ecol. Appl. — 2017. — Vol. 27, Iss. 2. — P. 363–377. DOI: 10.1002/eap.1474.

42. Brennan S.R., Zimmerman C.E., Fernandez D.P. et al. Strontium isotopes delineate finescale natal origins and migration histories of Pacific salmon // Sci. Advances. — 2015. — Vol. 1, № 4. DOI: 10.1126/sciadv.1400124.

43. Brickle P., Schuchert P.C., Arkhipkin A.I. et al. Otolith Trace Elemental Analyses of South American Austral Hake, Merluccius australis (Hutton, 1872) Indicates Complex Salinity Structuring on their Spawning/Larval Grounds // PLoS One. — 2016. — Vol. 11, Iss. 1: e0145479. DOI: 10.1371/journal.pone.0145479.

44. Brusher J.H., Schull J. Non-lethal age determination for juvenile goliath grouper Epinephelus itajara from southwest Florida // Endang. Spec. Res. — 2009. — Vol. 7. — P. 205–212. DOI: 10.3354/esr00126.

45. Caccavo J.A., Ashford J.R., Ryan S. et al. Spatial structuring and life history connectivity of Antarctic silverfish along the southern continental shelf of the Weddell Sea // Mar. Ecol. Prog. Ser. — 2019. — Vol. 624. — P. 195–212. DOI: 10.3354/meps13017.

46. Campana S.E. Chemistry and composition of fish otoliths: pathways, mechanisms and applications // Mar. Ecol. Prog. Ser. — 1999. — Vol. 188. — P. 263–297. DOI: 10.3354/meps188263.

47. Campana S.E. Otolith elemental composition as a natural marker of fish stocks // Stock identification methods applications in fishery science / ed. by S.X. Cadrin, K.D. Friedland, J.R. Waldman. — Elsevier, 2005. — Ch. 12. — P. 227–245. DOI: 10.1016/B978-012154351-8/50013-7.

48. Campana S.E., Chouinard G.A., Hanson J.M. et al. Otolith elemental fingerprints as biological tracers of fish stocks // Fish. Res. — 2000. — Vol. 46, Iss. 1–3. — P. 343–357. DOI: 10.1016/S0165-7836(00)00158-2.

49. Campana S.E., Fowler A.J., Jones C.M. Otolith elemental fingerprinting for stock identification of Atlantic cod (Gadus morhua) using laser ablation ICPMS // Can. J. Fish. Aquat. Sci. — 1994. — Vol. 51. — P. 1942–1950. DOI: 10.1139/f94-196.

50. Campana S.E., Neilson J.D. Daily growth increments in otoliths of starry flounder (Platichthys stellatus) and the influence of some environmental variables in their production // Can. J. Fish. Aquat. Sci. — 1982. — Vol. 39, № 7. — P. 937–942. DOI: 10.1139/f82-127.

51. Carlson A.K., Fincel M.J., Graeb B.D.S. Otolith microchemistry reveals natal origins of walleyes in Missouri River reservoirs // North Amer. J. Fish. Manag. — 2016. — Vol. 36, Iss. 2. — P. 341–350. DOI: 10.1080/02755947.2015.1135214.

52. Carlson A.K., Phelps Q.E., Graeb B.D.S. Chemistry to conservation: Using otoliths to advance recreational and commercial fisheries management // J. Fish Biol. — 2017. — Vol. 90, Iss. 2. — P. 505–527. DOI: 10.1111/jfb.13155.

53. Carragher J.F., Sumpter J.P. The mobilization of calcium from calcified tissues of rainbow trout (Oncorhynchus mykiss) induced to synthesize vitellogenin // Comp. Biochem. Physiol. — 1991. — Vol. 99, Iss. 1–2. — P. 169–172. DOI: 10.1016/0300-9629(91)90253-9.

54. Chang M., Tzeng W., You C. Using otolith trace elements as biological tracer for tracking larval dispersal of black porgy, Acanthopagrus schlegeli and yellowfin seabream, A. latus among estuaries of western Taiwan // Environ. Biol. Fish. — 2012. — Vol. 95. — P. 491–502. DOI: 10.1007/s10641-012-0081-7.

55. Chang W., Shih C., Lin H. et al. Discrimination of wild and hatchery-reared black porgy Acanthopagrus schlegelii using otolith elements analysis of magnesium and manganese // Open J. Mar. Sci. — 2019. — Vol. 9, № 1. — P. 18–32. DOI: 10.4236/ojms.2019.91002

56. Chiang C.-I., Chung M.-T., Shih T.-W. et al. Evaluation of the 137Ba mass-marking technique and potential effects in the early life history stages of Sepioteuthis lessoniana // Mar. Freshwater Res. — 2019. — Vol. 70. — P. 1698–1707. DOI: 10.1071/MF18325.

57. Ching T.-Y., Chen C.-S., Wang C.-H. Spatiotemporal variations in life-history traits and statolith trace elements of Sepioteuthis lessoniana populations around northern Taiwan // J. Mar. Biol. Assoc. UK. — 2017. — Vol. 99, Iss. 1. — P. 1–11. DOI: 10.1017/S0025315417001801.

58. Chittaro P.M., Usseglio P., Fryer B.J., Sale P.F. Using otolith microchemistry of Haemulon flavolineatum (French grunt) to characterize mangroves and coral reefs throughout Turneffe Atoll, Belize: difficulties at small spatial scales // Estuaries. — 2005. — Vol. 28, № 3. — P. 373–381. DOI: 10.1007/BF02693920.

59. Ciepiela L.R., Walters A.W. Life-history variation of two inland salmonids revealed through otolith microchemistry analysis // Can. J. Fish. Aquat. Sci. — 2019. — Vol. 76, № 11. — P. 1971–1981. DOI: 10.1139/cjfas-2018-0087.

60. Clarke A.D., Telmer K.H., Shrimpton J.M. Elemental analysis of otoliths, fin rays and scales: a comparison of bony structures to provide population and life-history information for the Arctic grayling (Thymallus arcticus) // Ecol. Freshwater Fish. — 2007. — Vol. 16, Iss. 3. — P. 354–361. DOI: 10.1111/j.1600-0633.2007.00232.x.

61. Clarke A.D., Telmer K.H., Shrimpton J.M. Movement patterns of fish revealed by otolith microchemistry: a comparison of putative migratory and resident species // Environ. Biol. Fish. — 2015. — Vol. 98, Iss. 6. — P. 1583–1597. DOI: 10.1007/s10641-015-0384-6.

62. Coiraton C., Amezcua F. In utero elemental tags in vertebrae of the scalloped hammerhead shark Sphyrna lewini reveal migration patterns of pregnant females // Sci. Rep. — 2020. — Vol. 10. DOI: 10.1038/s41598-020-58735-8.

63. Courtemanche D.A., Whoriskey Jr.F.G., Bujold V., Curry R.A. Assessing anadromy of brook char (Salvelinus fontinalis) using scale microchemistry // Can. J. Fish. Aquat. Sci. — 2006. — Vol. 63, № 5. — P. 995–1006. DOI: 10.1139/f06-009.

64. Coutant C.C., Chen C.H. Strontium microstructure in scales of freshwater and estuarine striped bass (Morone saxatilis) detected by laser ablation mass spectrometry // Can. J. Fish. Aquat. Sci. — 1993. — Vol. 50, № 6. — P. 1318–1323. DOI: 10.1139/f93-149.

65. Crook D.A., Wedd D., Berra T.M. Analysis of otolith 87Sr/86Sr to elucidate salinity histories of Nurseryfish Kurtus gulliveri (Perciformes: Kurtidae) in a tropical lowland river in northern Australia // Freshwater Sci. — 2015. — Vol. 34, Iss. 2. — P. 609–619. DOI: 10.1086/681022.

66. Cuevas M.J., Górski K., Castro L.R. et al. Otolith elemental composition reveals separate spawning areas of anchoveta, Engraulis ringens, off central Chile and northern Patagonia // Sci. Mar. — 2019. — Vol. 83, Iss. 4. — P. 317–326. DOI: 10.3989/scimar.04918.28A.

67. David B.O., Jarvis M., Özkundakci D. et al. To sea or not to sea? Multiple lines of evidence reveal the contribution of non-diadromous recruitment for supporting endemic fish populations within New Zealand’s longest river // Aquat. Conserv.: Mar. Freshw. Ecosyst. — 2019. — Vol. 29, Iss. 9. — P. 1409–1423. DOI: 10.1002/aqc.3022.

68. Degens E.T., Deuser W.G., Haedrich R.L. Molecular structure and composition of fish otoliths // Mar. Biol. — 1969. — Vol. 2. — P. 105–113. DOI: 10.1007/BF00347005.

69. Döring J., Wagner C., Tiedemann M. et al. Spawning energetics and otolith microchemistry provide insights into the stock structure of bonga shad Ethmalosa fimbriata // J. Fish Biol. — 2019. — Vol. 94, Iss. 2. — P. 241–250. DOI: 10.1111/jfb.13881.

70. Duponchelle F., Pouilly M., Pécheyran C. et al. Trans-Amazonian natal homing in giant catfish // J. Appl. Ecol. — 2016. — Vol. 53, Iss. 5. — P. 1511–1520. DOI: 10.1111/1365-2664.12665.

71. Edmonds J.S., Moran M.J., Caputi N., Morita M. Trace element analysis of fish sagittae as an aid to stock identifications: pink snapper (Chrysophrys auratus) in western Australian waters // Can. J. Fish. Aquat. Sci. — 1989. — Vol. 46, № 1. — P. 50–54. DOI: 10.1139/f89-007.

72. El Meknassi S., Dera G., Cardone T. et al. Sr isotope ratios of modern carbonate shells: Good and bad news for chemostratigraphy // Geology. — 2018. — Vol. 46, Iss. 11. — P. 1003–1006. DOI: 10.1130/G45380.1.

73. Elsdon T.S., Wells B.K., Campana S.E. et al. Otolith chemistry to describe movements and life-history parameters of fishes: Hypotheses, assumptions, limitations and inferences // Ocean. Mar. Biol. — 2008. — Vol. 46. — P. 297–330.

74. Farrell J., Campana S.E. Regulation of calcium and strontium deposition on the otoliths of juvenile tilapia, Oreochromis niloticus // Comp. Biochem. Physiol. Part A: Physiology. — 1996. — Vol. 115, Iss. 2. — P. 103–109. DOI: 10.1016/0300-9629(96)00015-1.

75. Ferreira I., Santos D., Moreira C. et al. Population structure of Chelidonichthys lucerna in Portugal mainland using otolith shape and elemental signatures // Mar. Biol. Res. — 2019. — Vol. 15, Iss. 8–9. — P. 500–512. DOI: 10.1080/17451000.2019.1673897.

76. Feyrer F., Hobbs J., Baerwald M. et al. Otolith microchemistry provides information complementary to microsatellite DNA for a migratory fish // Transact. Amer. Fish. Soc. — 2007. — Vol. 136, Iss. 2. — P. 469–476. DOI: 10.1577/T06-044.1.

77. Flem B., Benden T.F., Finne T.E. et al. The fish farm of origin is assigned by the element profile of Atlantic salmon (Salmo salar L.) scales in a simulated escape event // Fish. Res. — 2018. — Vol. 206. — P. 1–13. DOI: 10.1016/j.fishres.2018.04.025.

78. Flem B., Moen V., Finne T. et al. Trace element composition of smolt scales from Atlantic salmon (Salmo salar L.), geographic variation between hatcheries // Fish. Res. — 2017. — Vol. 190. — P. 183–196. DOI: 10.1016/j.fishres.2017.02.010.

79. Fortunato R.C., González-Castro M., Galán A.R. et al. Identification of potential fish stocks and lifetime movement patterns of Mugil liza Valenciennes, 1836 in the Southwestern Atlantic Ocean // Fish. Res. — 2017. — Vol. 193. — P. 164–172. DOI: 10.1016/j.fishres.2017.04.005.

80. Fukushima M., Jutagate T., Grudpan C. et al. Potential effects of hydroelectric dam development in the Mekong River basin on the migration of Siamese mud carp (Henicorhynchus siamensis and H. lobatus) elucidated by otolith microchemistry // PloS One. — 2014. — Vol. 9, Iss. 8: e103722. DOI: 10.1371/journal.pone.0103722.

81. Gabrielsson R.M., Kim J., Reid M.R. et al. Does the trace element composition of brown trout Salmo trutta eggs remain unchanged in spawning redds? // J. Fish Biol. — 2012. — Vol. 81, Iss. 6. — P. 1871–1879. DOI: 10.1111/j.1095-8649.2012.03396.x.

82. Gahagan B.I., Vokoun J.C., Whitledge G.W., Schultz E.T. Evaluation of otolith microchemistry for identifying natal origin of anadromous river herring in Connecticut // Mar. Coast. Fish. — 2012. — Vol. 4, Iss. 1. — P. 358–372. DOI: 10.1080/19425120.2012.675967.

83. Galleguillos R., Ferrada S., Canales-Aguirre C. et al. Análisis de genética de poblaciones // Unidades poblacionales de merluza de tres aletas (Micromesistius australis) / preparado por Niklitschek E., Canales C., Ferrada S. et al. — Coyhaique, 2009. — P. 34–49.

84. Gaston T.F., Suthers I.M. Spatial variation in δ13C and δ15N of liver, muscle and bone in a rocky reef planktivorous fish: the relative contribution of sewage // J. Exp. Mar. Biol. Ecol. — 2004. — Vol. 304. — P. 17–33. DOI: 10.1016/j.jembe.2003.11.022.

85. Gauldie R.W., Sharma S.K., Volk E. Micro-raman spectral study of vaterite and aragonite otoliths of the coho salmon, Oncorhynchus kisutch // Comp. Biochem. Physiol. Part A: Physiology. — 1997. — Vol. 118, Iss. 3. — P. 753–757. DOI: 10.1016/S0300-9629(97)00059-5.

86. Geffen A.J., Nash R.D.M., Dickey-Collas M. Characterization of herring populations west of the British Isles: an investigation of mixing based on otolith microchemistry // ICES J. Mar. Sci. — 2011. — Vol. 68, Iss. 7. — P. 1447–1458. DOI: 10.1093/icesjms/fsr051.

87. Gillanders B.M. Trace metals in four structures of fish and their use for estimates of stock structure // Fish. Bull. — 2001. — Vol. 99. — P. 410–419.

88. Gleason C.M., Norcross B.L., Spaleta K. Otolith chemistry discriminates water mass occupancy of Arctic fishes in the Chukchi Sea // Mar. Freshwater Res. — 2016. — Vol. 67, Iss. 7. — P. 967–979. DOI: 10.1071/MF15084.

89. Glimcher M.J. The nature of the mineral phase in bone: Biological and clinical implications // Metabolic bone disease and clinically related disorders / ed. by L.V. Avioli, S.M. Krane. — San Diego, CA : Academic Press, 1998. — Chap. 2. — P. 23–52.

90. Green C.P., Robertson S.G., Hamer P.A. et al. Combining statolith element composition and Fourier shape data allows discrimination of spatial and temporal stock structure of arrow squid (Nototodarus gouldi) // Can. J. Fish. Aquat. Sci. — 2015. — Vol. 72. — P. 1–10. DOI: 10.1139/cjfas-2014-0559.

91. Guidetti P., Petrillo M., De Benedetto G., Albertelli G. The use of otolith microchemistry to investigate spawning patterns in European anchovy: A case study in the eastern Ligurian Sea (NW Mediterranean) // Fish. Res. — 2013. — Vol. 139. — P. 1–4. DOI: 10.1016/j.fishres.2012.10.015.

92. Guillou A., Delanoue J. Use of strontium as a nutritional marker for farm-reared brook trout // The Prog. Fish-Cult. — 1987. — Vol. 49. — P. 34–39. DOI: 10.1577/1548-8640(1987)49<34:YO-SAAN>2.0.CO;2.

93. Gunn J.S., Harrowfield I.R., Proctor C.H., Thresher R.E. Electron probe microanalysis of fish otoliths — evaluation of techniques for studying age and stock discrimination // J. Exp. Mar. Biol. Ecol. — 1992. — Vol. 158, Iss. 1. — P. 1–36. DOI: 10.1016/0022-0981(92)90306-U.

94. Hale L.F., Dudgeon J.V., Mason A.Z., Lowe C.G. Elemental signatures in the vertebral cartilage of the round stingray, Urobatis halleri, from Seal Beach, California // Environ. Biol. Fish. — 2006. — Vol. 77, Iss. 3–4. — P. 317–325. DOI: 10.1007/s10641-006-9124-2.

95. Hand C.P., Ludsin S.A., Fryer B.J., Marsden E.J. Statolith microchemistry as a technique for discriminating among Great Lakes sea lamprey (Petromyzon marinus) spawning tributaries // Can. J. Fish. Aquat. Sci. — 2008. — Vol. 65. — P. 1153–1164.

96. Hansson S.V., Desforges J.-P., van Beest F.M. et al. Bioaccumulation of mining derived metals in blood, liver, muscle and otoliths of two Arctic predatory fish species (Gadus ogac and Myoxocephalus scorpius) // Env. Res. — 2020. — Vol. 183. DOI: 10.1016/j.envres.2020.109194.

97. Hata M., Kawakami T., Otake T. Immediate impact of the tsunami associated with the 2011 Great East Japan Earthquake on the Plecoglossus altivelis altivelis population from the Sanriku coast of northern Japan // Environ. Biol. Fish. — 2016. — Vol. 99. — P. 527–538.

98. Hauser M., Duponchelle F., Hermann T.W. et al. Unmasking continental natal homing in goliath catfish from the upper Amazon // Freshwater Biol. — 2020. — Vol. 65, Iss. 2. — P. 325–336. DOI: 10.1111/fwb.13427.

99. Hedger R.D., Atkinson P.M., Thibault I., Dodson J.J. A quantitative approach for classifying fish otolith strontium: calcium sequences into environmental histories // Ecol. Informatics. — 2008. — Vol. 3, № 3. — P. 207–217. DOI: 10.1016/j.ecoinf.2008.04.001.

100. Hegg J.C., Kennedy B.P., Chittaro P. What did you say about my mother? The complexities of maternally derived chemical signatures in otoliths // Can. J. Fish. Aquat. Sci. — 2019. — Vol. 76, № 1. — P. 81–94. DOI: 10.1139/cjfas-2017-0341.

101. Heidemann F., Marohn L., Hinrichsen H.H. et al. Suitability of otolith microchemistry for stock separation of Baltic cod // Mar. Ecol. Prog. Ser. — 2012. — Vol. 465. — P. 217–226. DOI: 10.3354/meps09922.

102. Hill K.T., Cailliet G.M., Radtke R.L. A comparative analysis of growth zones in four calcified structures of Pacific blue marlin, Makaira nigricans // Fish. Bull. — 1989. — Vol. 87, Iss. 4. — P. 829–843.

103. Hobbs J.A., Lewis L.S., Ikemiyagi N. et al. The use of otolith strontium isotopes (87Sr/86Sr) to identify nursery habitat for a threatened estuarine fish // Environ. Biol. Fish. — 2010. — Vol. 89. — P. 557–569. DOI: 10.1007/s10641-010-9672-3.

104. Humston R., Doss S.S., Wass C. et al. Isotope geochemistry reveals ontogeny of dispersal and exchange between main-river and tributary habitats in smallmouth bass Micropterus dolomieu // J. Fish Biol. — 2017. — Vol. 90, Iss. 2. — P. 528–548. DOI: 10.1111/jfb.13073.

105. Hüssy K., Gröger J., Heidemann F. et al. Slave to the rhythm: seasonal signals in otolith microchemistry reveal age of eastern Baltic cod (Gadus morhua) // ICES J. Mar. Sci. — 2016. — Vol. 73, Iss. 4. — P. 1019–1032. DOI: 10.1093/icesjms/fsv247.

106. Hutchinson J.J., Trueman C.N. Stable isotope analyses of collagen in fish scales: limitations set by scale architecture // J. Fish Biol. — 2006. — Vol. 69, Iss. 6. — P. 1874–1880. DOI: 10.1111/j.1095-8649.2006.01234.x.

107. Izzo C., Huveneers C., Drew M. et al. Vertebral chemistry demonstrates movement and population structure of bronze whaler // Mar. Ecol. Prog. Ser. — 2016. — Vol. 556. — P. 195–207. DOI: 10.3354/meps11840.

108. Izzo C., Reis-Santos P., Gillanders B.M. Otolith chemistry does not just reflect environmental conditions: A meta-analytic evaluation // Fish and Fisheries. — 2018. — Vol. 19, Iss. 3. — P. 441–454. DOI: 10.1111/faf.12264.

109. Jacobsen J.A., Hansen L.P. Conventional tagging methods in stock identification: internal and external tags : ICES ASC 2004/EE:29. — 2004. — 16 p.

110. Jarić I., Lenhardt M., Pallon J. et al. Insight into Danube sturgeon life history: trace element assessment in pectoral fin rays // Environ. Biol. Fish. — 2011. — Vol. 90, Iss. 2. — P. 171–181. DOI: 10.1007/s10641-010-9728-4.

111. Jones R. Manual of methods for fish stock assessment, Part 4. Marking : Fao Fisheries Technical Paper. — 1966. — № 51, Suppl 1. — 109 p.

112. Kafemann R., Adlerstein S., Neukamm R. Variation in otolith strontium and calcium ratios as an indicator of life-history strategies of freshwater fish species within a brackish water system // Fish. Res. — 2000. — Vol. 46, Iss. 1–3. — P. 313–325. DOI: 10.1016/s0165-7836(00)00156-9.

113. Kalish J.M. Use of otolith microchemistry to distinguish the progeny of sympatric anadromous and non-anadromous salmonids // Fish. Bull. — 1990. — Vol. 88. — P. 657–666.

114. Kang S., Kim S., Telmer K. et al. Stock identification and life history interpretation using trace element signatures in salmon otoliths // Ocean Sci. J. — 2014. — Vol. 49, Iss. 3. — P. 201–210. DOI: 10.1007/s12601-014-0020-y.

115. Keenleyside K.A. Elemental composition of vertebral bone of the northern redbelly dace (Phoxinus eos) in relation to lake environmental factors : M. Sc. — Univ. of Toronto, Ontario, Canada, 1992.

116. Keller D.H., Zelanko P.M., Gagnon J.E. et al. Linking otolith microchemistry and surface water contamination from natural gas mining // Environ. Pollut. — 2018. — Vol. 240. — P. 457–465. DOI: 10.1016/j.envpol.2018.04.026.

117. Kennedy B.P., Blum J.D., Folt C.L., Nislow K.H. Using natural strontium isotopic signatures as fish markers: Methodology and application // Can. J. Fish. Aquat. Sci. — 2000. — Vol. 57, № 11. — P. 2280–2292. DOI: 10.1139/cjfas-57-11-2280.

118. Kerr L.A., Campana S.E. Chemical composition of fish hard parts as a natural marker of fish stocks // Stock identification methods / ed. by S.X. Cadrin, L.A. Kerr, S. Mariani. — San Diego : Academic Press, 2014. — Chap. 11. — P. 205–234. DOI:10.1016/B978-0-12-397003-9.00011-4.

119. Kerr L.A., Secor D.H., Kraus R.T. Stable isotope (δ13C and δ18O) and Sr/Ca composition of otoliths as proxies for environmental salinity experienced by an estuarine fish // Mar. Ecol. Prog. Ser. — 2007. — Vol. 349. — P. 245–253. DOI: 10.3354/meps07064.

120. Lall S.P. The minerals // Fish nutrition / ed. by J.E. Halver, R.W. Hardy. — San Diego : Academic, 2002. — P. 259–308. DOI: 10.1016/B978-012319652-1/50006-9.

121. Landsman S., Stein J.A., Whitledge G., Robillard S.R. Stable oxygen isotope analysis confirms natural recruitment of Lake Michigan-origin Lake Trout (Salvelinus namaycush) to the adult life stage // Fish. Res. — 2017. — Vol. 190. — P. 15–23. DOI: 10.1016/j.fishres.2017.01.013.

122. Lazartigues A.V., Plourde S., Dodson J.J. et al. Determining natal sources of capelin in a boreal marine park using otolith microchemistry // ICES J. Mar. Sci. — 2016. — Vol. 73, Iss. 10. — P. 2644−2652. DOI: 10.1093/icesjms/fsw104.

123. Ley J.A., Rolls H.J. Using otolith microchemistry to assess nursery habitat contribution and function at a fine spatial scale // Mar. Ecol. Prog. Ser. — 2018. — Vol. 606. — P. 151–173. DOI: 10.3354/meps12765.

124. Liden K., Angerbjörn A. Dietary change and stable isotopes: a model of growth and dormancy in cave bears // Proceedings of the Royal Society B: Biological Sciences. — 1999. — Vol. 266(1430). — P. 1779–1783. DOI: 10.1098/rspb.1999.0846.

125. Limburg K.E., Elfman M., Kristiansson P. et al. New insights into fish ecology via nuclear microscopy of otoliths // AIP Conference Proceedings: Proceedings of 17th International Conference on Applications of Accelerators in Research and Industry. — 2003. — Vol. 680, Iss. 1. — P. 339–342. DOI: 10.1063/1.1619730.

126. Limburg K.E., Landergren P., Westin L. et al. Flexible modes of anadromy in Baltic sea trout: making the most of marginal spawning streams // J. Fish Biol. — 2001. — Vol. 59, Iss. 3. — P. 682–695. DOI: 10.1111/j.1095-8649.2001.tb02372.x.

127. Loeppky A.R., McDougall C.A., Anderson W.G. Identification of hatchery-reared Lake Sturgeon Acipenser fulvescens using natural elemental signatures and stable isotope marking of fin rays // North Amer. J. Fish. Manag. — 2020. — Vol. 40, Iss. 1. — P. 61–74. DOI: 10.1002/nafm.10372.

128. Longmore C., Fogarty K., Neat F. et al. A comparison of otolith microchemistry and otolith shape analysis for the study of spatial variation in a deep-sea teleost, Coryphaenoides rupestris // Environ. Biol. Fish. — 2010. — Vol. 89, Iss. 3. — P. 591–605. DOI: 10.1007/s10641-010-9674-1.

129. Lowe M.R., DeVries D.R., Wright R.A. et al. Otolith microchemistry reveals substantial use of freshwater by southern flounder in the northern Gulf of Mexico // Estuaries and Coasts. — 2011. — Vol. 34, № 3. — P. 630–639. DOI: 10.1007/s12237-010-9335-9.

130. Mai A.C.G., dos Santos M.L., Lemos V.M., Vieira J.P. Discrimination of habitat use between two sympatric species of mullets, Mugil curema and Mugil liza (Mugiliformes: Mugilidae) in the rio Tramandaí Estuary, determined by otolith chemistry // Neotrop. Ichthyol. — 2018. — Vol. 16, № 2. DOI: 10.1590/1982-0224-20170045.

131. Manual of fish sclerochronology / eds by J. Panfili, H. Pontual (de), H. Troadec, P.J. Wright. — Brest, France : Ifremer-lRD coedition, 2002. — 464 p.

132. Martin J., Bareille G., Berail S. et al. Persistence of a southern Atlantic salmon population: Diversity of natal origins from otolith elemental and Sr isotopic signatures // Can. J. Fish. Aquat. Sci. — 2013. — Vol. 70, № 2. — P. 182–197. DOI: 10.1139/cjfas-2012-0284.

133. McMullin R.M., Wing S.R., Reid M.R. Ice fish otoliths record dynamics of advancing and retreating sea ice in Antarctica // Limnol. Oceanogr. — 2017. — Vol. 62, Iss. 6. — P. 2662–2673. DOI: 10.1002/lno.10597.

134. Miyan K., Khan M.A., Patel D.K. et al. Truss morphometry and otolith microchemistry reveal stock discrimination in Clarias batrachus (Linnaeus, 1758) inhabiting the Gangetic river system // Fish. Res. — 2016. — Vol. 173. — P. 294–302. DOI: 10.1016/j.fishres.2015.10.024.

135. Moll D., Kotterba P., Jochum K.P. et al. Elemental inventory in fish otoliths reflects natal origin of Atlantic herring (Clupea harengus) from Baltic Sea juvenile areas // Front. Mar. Sci. — 2019. — Vol. 6. — P. 1–11. DOI: 10.3389/fmars.2019.00191.

136. Morais P., Dias E., Cerveira I. et al. How scientists reveal the secret migrations of fish // Frontiers for Young Minds. — 2018. — Vol. 6. — P. 1–10. DOI: 10.3389/frym.2018.00067.

137. Mugiya Y., Hakomori T., Hatsutori K. Trace metal incorporation into otoliths and scales in the goldfish, Carassius auratus // Comp. Biochem. Physiol. Part C : Comp. Pharmacol. — 1991. — Vol. 99, Iss. 3. — P. 327–331. DOI: 10.1016/0742-8413(91)90250-W.

138. Mugiya Y., Watabe N. Studies on fish scale formation and resorption—II. Effect of estradiol on calcium homeostasis and skeletal tissue resorption in the goldfish, Carassius auratus, and the killifish, Fundulus heteroclitus // Comp. Biochem. Physiol. Part A : Physiology. — 1977. — Vol. 57, Iss. 2. — P. 197–202. DOI: 10.1016/0300-9629(77)90455-8.

139. Muhlfeld C.C., Marotz B., Thorrold S.R., FitzGerald J.L. Geochemical signatures in scales record stream of origin in westslope cutthroat trout // Transact. Amer. Fish. Soc. — 2005. — Vol. 134, Iss. 4. — P. 945–959. DOI: 10.1577/T04-029.1.

140. Muhlfeld C.C., Thorrold S.R., McMahon T.E., Marotz B. Estimating westslope cutthroat trout (Oncorhynchus clarkii lewisi) movements in a river network using strontium isoscapes // Can. J. Fish. Aquat. Sci. — 2012. — Vol. 69, № 5. — P. 906–915. DOI: 10.1139/f2012-033.

141. Mulligan T.J., Lapi L., Kieser R. et al. Salmon stock identification based on elemental composition of vertebrae // Can. J. Fish. Aquat. Sci. — 1983. — Vol. 40, № 2. — P. 215–229. DOI: 10.1139/f83-032.

142. Murase I., Iguchi K. Facultative amphidromy involving estuaries in an annual amphidromous fish from a subtropical marginal range // J. Fish Biol. — 2019. — Vol. 95, Iss. 6. — P. 1391–1398. DOI: 10.1111/jfb.14147.

143. Nazir A., Khan M.A. Spatial and temporal variation in otolith chemistry and its relationship with water chemistry: Stock discrimination of Sperata aor // Ecol. Freshwater Fish. — 2019. — Vol. 28, Iss. 3. — P. 499–511. DOI: 10.1111/eff.12471.

144. Niklitschek E.J., Secor D.H., Toledo P. et al. Segregation of SE Pacific and SW Atlantic southern blue whiting stocks: integrating evidence from complementary otolith microchemistry and parasite assemblage approaches // Environ. Biol. Fish. — 2010. — Vol. 89, Iss. 3. — P. 399–413. DOI: 10.1007/s10641-010-9695-9.

145. Nishimoto M.M., Washburn L., Warner R.R. et al. Otolith elemental signatures reflect residency in coastal water masses // Environ. Biol. Fish. — 2010. — Vol. 89, Iss. 3. — P. 341–356. DOI: 10.1007/s10641-010-9698-6.

146. Northern T.J., Smith A.M., McKinnon J.F., Bolstad K.S.R. Trace elements in beaks of greater hooked squid Onykia ingens: opportunities for environmental tracing // Molluscan Res. — 2019. — Vol. 39, Iss. 1. — P. 29–34. DOI: 10.1080/13235818.2018.1495604.

147. Nowling L., Gauldie R.W., Cowan Jr. J.H., De Carlo E. Successful discrimination using otolith microchemistry among samples of red snapper Lutjanus campechanus from artificial reefs and samples of L. campechanus taken from nearby oil and gas platforms // Open Fish Sci. J. — 2011. — Vol. 4. — P. 1–9. DOI: 10.2174/1874401x01104010001.

148. Olley R., Young R.G., Closs G.P. et al. Recruitment sources of brown trout identified by otolith trace element signatures // New Zeal. J. Mar. Freshwater Res. — 2011. — Vol. 45, Iss. 3. — P. 395–411. DOI: 10.1080/00288330.2011.592196.

149. Padilla A.J., Brown R.J., Wooller M.J. Determining the movements and distribution of anadromous Bering Ciscoes by use of otolith strontium isotopes // Transact. Amer. Fish. Soc. — 2016. — Vol. 145, Iss. 6. — P. 1374–1385. DOI: 10.1080/00028487.2016.1225599.

150. Pangle K.L., Ludsin S.A., Fryer B.J. Otolith microchemistry as a stock identification tool for freshwater fishes: testing its limits in Lake Erie // Can. J. Fish. Aquat. Sci. — 2010. — Vol. 67, № 9. — P. 1475–1489. DOI: 10.1139/F10-076.

151. Patterson W.F.III, Cowan Jr. J.H., Graham E.Y., Berry Lyons W. Otolith microchemical fingerprints of age-0 Red snapper, Lutjanus campechanus, from the northern Gulf of Mexico // Gulf of Mexico Science. — 1998. — Vol. 16, № 1. — P. 83–91. DOI: 10.18785/goms.1601.12.

152. Pearcy W.G., Miller J.A. Otolith microchemistry of Coastal Cutthroat Trout from the Marys and Willamette Rivers // Northwestern Naturalist. — 2018. — Vol. 99, Iss. 2. — P. 101–114. DOI: 10.1898/NWN17-21.1.

153. Pender P.J., Griffin R.K. Habitat history of barramundi Lates calcarifer in a north Australian river system based on barium and strontium levels in scales // Transact. Amer. Fish. Soc. — 1996. — Vol. 125, Iss. 5. — P. 679–689. DOI: 10.1577/1548-8659(1996)125<0879:HHOBCI>2.3.CO;2.

154. Pereira L.A., Santos R.V., Hauser M. et al. Commercial traceability of Arapaima spp. fisheries in the Amazon basin: can biogeochemical tags be useful? // Biogeosciences. — 2019. — Vol. 16. — P. 1781–1797. DOI: 10.5194/bg-16-1781-2019.

155. Perrier C., Daverat F., Evanno G. et al. Coupling genetic and otolith trace element analyses to identify river-born fish with hatchery pedigrees in stocked Atlantic salmon (Salmo salar) populations // Can. J. Fish. Aquat. Sci. — 2011. — Vol. 68, № 6. — P. 977–987. DOI: 10.1139/f2011-040.

156. Perrion M.A., Kaemingk M.A., Koupal K.D. et al. Use of otolith chemistry to assess recruitment and habitat use of a white bass fishery in a Nebraska reservoir // Lake and Reservoir Management. — 2020. — Vol. 36, Iss. 1. — P. 64–74. DOI: 10.1080/10402381.2019.1637977.

157. Phelps Q.E., Hupfeld R.N., Whitledge G.W. Lake sturgeon Acipenser fulvescens and shovelnose sturgeon Scaphirhynchus platorynchus environmental life history revealed using pectoral fin-ray microchemistry: Implications for interjurisdictional conservation through fishery closure zones // J. Fish Biol. — 2017. — Vol. 90, Iss. 2. — P. 626–639. DOI: 10.1111/jfb.13242.

158. Pozebon D., Scheffler G.L., Dressler V.L. Recent applications of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) for biological sample analysis: a follow-up review // J. Anal. At. Spectrom. — 2017. — Vol. 32, Iss. 5. — P. 890–919. DOI: 10.1039/C7JA00026J.

159. Prichard C.G., Jonas J.L., Studen J.J. et al. Same habitat, different species: otolith microchemistry relationships between migratory and resident species support interspecific natal source classification // Environ. Biol. Fish. — 2018. — Vol. 101, Iss. 6. — P. 1025–1038. DOI: 10.1007/s10641-018-0756-9.

160. Proctor C.H., Thresher R.E., Gunn J.S. et al. Stock structure of the southern bluefin tuna Thunnus maccoyii: an investigation based on probe microanalysis of otolith composition // Mar. Biol. — 1995. — Vol. 122. — P. 511–526. DOI: 10.1007/BF00350674.

161. Ramsay A.L., Hughes R.N., Chenery S.R., McCarthy I.D. Biogeochemical tags in fish: predicting spatial variations in strontium and manganese in Salmo trutta scales using stream water geochemistry // Can. J. Fish. Aquat. Sci. — 2015. — Vol. 72, № 3. — P. 422–433. DOI: 10.1139/cjfas-2014-0055.

162. Ramsay A.L., Milner N.J., Hughes R.N., McCarthy I.D. Comparison of the performance of scale and otolith microchemistry as fisheries research tools in a small upland catchment // Can. J. Fish. Aquat. Sci. — 2011. — Vol. 68, № 5. — P. 823–833. DOI: 10.1139/f2011-027.

163. Randon M., Daverat F., Bareille G. et al. Quantifying exchanges of Allis shads between river catchments by combining otolith microchemistry and abundance indices in a Bayesian model // ICES J. Mar. Sci. — 2018. — Vol. 75, Iss. 1. — P. 9–21. DOI: 10.1093/icesjms/fsx148.

164. Reader J.M., Spares A., Stokesbury M.J.W. et al. Elemental fingerprints of otoliths from smolt of Atlantic salmon, Salmo salar Linnnaeus, 1758, from three maritime watersheds: natural tag for stock discrimination // Proceedings of the Nova Scotian Institute of Science. — 2015. — Vol. 48, Iss. 1. — P. 91–123. DOI: 10.15273/pnsis.v48i1.5908.

165. Régnier T., Augley J., Devalla S. et al. Otolith chemistry reveals seamount fidelity in a deepwater fish // Deep-Sea Res. I. — 2017. — Vol. 121. — P. 183–189. DOI: 10.1016/j.dsr.2017.01.010.

166. Reimer T., Dempster T., Warren-Myers F. et al. High prevalence of vaterite in sagittal otoliths causes hearing impairment in farmed fish // Sci. Rep. — 2016. — Vol. 6. DOI: 10.1038/srep25249.

167. Roberts B.H., Morrongiello J.R., King A.J. et al. Migration to freshwater increases growth rates in a facultatively catadromous tropical fish // Oecologia. — 2019. — Vol. 191, Iss. 2. — P. 253–260. DOI: 10.1007/s00442-019-04460-7.

168. Rohtla M., Matetski L., Svirgsden R. et al. Do sea trout Salmo trutta parr surveys monitor the densities of anadromous or resident maternal origin parr, or both? // Fish. Manag. Ecol. — 2017. — Vol. 24, Iss. 2. — P. 156–162. DOI: 10.1111/fme.12214.

169. Rohtla M., Vetemaa M., Taal I. et al. Life history of anadromous burbot (Lota lota, Linneaus) in the brackish Baltic Sea inferred from otolith microchemistry // Ecol. Freshwater Fish. — 2014. — Vol. 23, Iss. 2. — P. 141–148. DOI: 10.1111/eff.12057.

170. Roy P.K., Lall S.P. Mineral nutrition of haddock Melanogrammus aeglefinus (L.): a comparison of wild and cultured stock // J. Fish Biol. — 2006. — Vol. 68, Iss. 5. — P. 1460–1472. DOI: 10.1111/j.0022-1112.2006.001031.x.

171. Rude N.P., Smith K.T., Whitledge G.W. Identification of stocked muskellunge and potential for distinguishing hatchery-origin and wild fish using pelvic fin ray microchemistry // Fish. Manag. Ecol. — 2014. — Vol. 21. — P. 312–321. DOI: 10.1111/fme.12081.

172. Ryan D., Shephard S., Gargan P., Roche W. Estimating sea trout (Salmo trutta L.) growth from scale chemistry profiles: an objective approach using LA-ICPMS // Fish. Res. — 2019. — Vol. 211. — P. 69–80. DOI: 10.1016/j.fishres.2018.10.029.

173. Ryan D., Shephard S., Kelly F.L. Temporal stability and rates of post-depositional change in geochemical signatures of brown trout Salmo trutta scales // J. Fish Biol. — 2016. — Vol. 89, Iss. 3. — P. 1704–1719. DOI: 10.1111/jfb.13081.

174. Santamaria N., Bello G., Pousis C. et al. Fin Spine Bone Resorption in Atlantic Bluefin Tuna, Thunnus thynnus, and Comparison between Wild and Captive-Reared Rpecimens // PLoS One. — 2015. — Vol. 10, № 3: e0121924. DOI: 10.1371/journal.pone.0121924.

175. Schilling H.T., Reis-Santos P., Hughes J.M. et al. Evaluating estuarine nursery use and life history patterns of Pomatomus saltatrix in eastern Australia // Mar. Ecol. Prog. Ser. — 2018. — Vol. 598. — P. 187–199. DOI: 10.3354/meps12495.

176. Schoen L.S., Student J.J., Hoffman J.C. et al. Reconstructing fish movements between coastal wetland and nearshore habitats of the Great Lakes // Limnol. Oceanogr. — 2016. — Vol. 61, Iss. 5. — P. 1800–1813. DOI: 10.1002/lno.10340.

177. Scholes R.C., Hageman K.J., Closs G.P. et al. Predictors of pesticide concentrations in freshwater trout — The role of life history // Environ. Pollut. — 2016. — Vol. 219. — P. 253–261. DOI: 10.1016/j.envpol.2016.10.017.

178. Sealy J., Armstrong R., Schrire C. Beyond lifetime averages: tracing life-histories through isotopic analysis of different calcified tissues from archaeological human skeletons // Antiquity. — 1995. — Vol. 69, Iss. 263. — P. 290–300. DOI: 10.1017/S0003598X00064693.

179. Secor D.H., Campana S.E., Zdanowicz V.S. et al. Inter-laboratory comparison of Atlantic and Mediterranean bluefin tuna otolith microconstituents // ICES J. Mar. Sci. — 2002. — Vol. 59, Iss. 6. — P. 1294–1304. DOI: 10.1006/jmsc.2002.1311.

180. Secor D.H., Houde E.D., Henderson-Arzapalo A., Picoli P.M. Tracking the migrations of estuarine and coastal fishes using otolith microchemistry : ICES Anadromous/Catadromous Committee. — 1993. — Vol. 41. — 16 p.

181. Sellheim K., Willmes M., Hobbs J.A. et al. Validating Fin Ray Microchemistry as a Tool to Reconstruct the Migratory History of White Sturgeon // Transact. Amer. Fish. Soc. — 2017. — Vol. 146, Iss. 5. — P. 844–857. DOI: 10.1080/00028487.2017.1320305.

182. Severin K.P., Carroll J., Norcross B.L. Electron microprobe analysis of juvenile walleye pollock, Theragra chalcogramma, otoliths from Alaska: a pilot stock separation study // Environ. Biol. Fish. — 1995. — Vol. 43. — P. 269–283. DOI: 10.1007/BF00005859.

183. Shaw P.W. Using mitochondrial DNA markers to test for differences between nuclear and mitochondrial genome genetic subdivision of the southern blue whiting (Micromesistius australis). — Stanley, Falkland Islands : Fisheries Department, Falkland Islands Government, 2005. — 20 p.

184. Shirai K., Koyama F., Murakami-Sugihara N. et al. Reconstruction of the salinity history associated with movements of mangrove fishes using otolith oxygen isotopic analysis // Mar. Ecol. Prog. Ser. — 2018. — Vol. 593. — P. 127–139. DOI: 10.3354/meps12514.

185. Shrimpton J.M., Warren K.D., Todd N.L. et al. Freshwater movement patterns by juvenile Pacific salmon Oncorhynchus spp. before they migrate to the ocean: Oh the places you’ll go! // J. Fish Biol. — 2014. — Vol. 85 (4). — P. 987–1004. DOI: 10.1111/jfb.12468.

186. Sie S.H., Thresher R.E. Micro-PIXE analysis of fish otoliths: methodology and evaluation of first results for stock discrimination // Internat. J. PIXE. — 1992. — Vol. 2, Iss. 3. — P. 357–379. DOI: 10.1142/S0129083592000385.

187. Sih T.L., Kingsford M.J. Near-reef elemental signals in the otoliths of settling Pomacentrus amboinensis (Pomacentridae) // Coral Reefs. — 2016. — Vol. 35. — P. 303–315. DOI: 10.1007/s00338-015-1376-x.

188. Smith K.T., Whitledge G. Trace element and stable isotopic signatures in otoliths and pectoral spines as potential indicators of catfish environmental history // Catfish 2010 : Proceedings of the 2nd International Catfish Symposium American Fisheries Society Symposium 77. — 2011. — P. 645–660.

189. Smith K.T., Whitledge G.W. Fin ray chemistry as a potential natural tag for smallmouth bass in Northern Illinois Rivers // J. Freshwater Ecol. — 2010. — Vol. 25, Iss. 4. — P. 627–635. DOI: 10.1080/02705060.2010.9664412.

190. Soeth M., Spach H., Daros F. et al. Stock structure of Atlantic spadefish Chaetodipterus faber from Southwest Atlantic Ocean inferred from otolith elemental and shape signatures // Fish. Res. — 2019. — Vol. 211. — P. 81–90. DOI: 10.1016/j.fishres.2018.11.003.

191. Sohn D., Kang S., Kim S. Stock identification of chum salmon (Oncorhynchus keta) using trace elements in otoliths // J. Oceanogr. — 2005. — Vol. 61. — P. 305–312.

192. Spurgeon J.J., Pegg M.A., Halden N.M. Mixed-origins of channel catfish in a large-river tributary // Fish. Res. — 2018. — Vol. 198. — P. 195–202. DOI: 10.1016/j.fishres.2017.09.001.

193. Sturrock A.M., Trueman C.N., Darnaude A.M., Hunter E. Can otolith elemental chemistry retrospectively track migrations in fully marine fishes? // J. Fish Biol. — 2012. — Vol. 81 (2). — P. 766–795. DOI: 10.1111/j.1095-8649.2012.03372.x.

194. Sturrock A.M., Trueman C.N., Milton J.A. et al. Physiological influences can outweigh environmental signals in otolith microchemistry research // Mar. Ecol. Prog. Ser. — 2014. — Vol. 500. — P. 245–264. DOI: 10.3354/meps10699.

195. Svirgsden R., Rohtla M., Albert A. et al. Do Eurasian minnows (Phoxinus phoxinus L.) inhabiting brackish water enter fresh water to reproduce: Evidence from a study on otolith microchemistry // Ecol. Freshwater Fish. — 2018. — Vol. 27, Iss. 1. — P. 89–97. DOI: 10.1111/eff.12326.

196. Swan S.C., Gordon J.D.M., Shimmield T. Preliminary investigations on the uses of otolith microchemistry for stock discrimination of the deep-water black scabbardfish (Aphanopus carbo) in the North East Atlantic // J. Northw. Atl. Fish. Sci. — 2003. — Vol. 31. — P. 221–231. DOI: 10.2960/J.v31.a17.

197. Taddese F., Reid M.R., Closs G.P. Direct relationship between water and otolith chemistry in juvenile estuarine triplefin Forsterygion nigripenne // Fish. Res. — 2019. — Vol. 211. — P. 32–39. DOI: 10.1016/j.fishres.2018.11.002.

198. Takagi Y., Yamada J. Effects of calcium and phosphate deficiencies on bone metabolism in a teleost, tilapia (Oreochromis niloticus): A histomorphometric study // Mechanisms and phylogeny of mineralization in biological systems / ed. by Suga S., Nakahara H. — Tokyo : Springer, 1991. — Chapter 2.11. — P. 187–191.

199. Thibault I., Hedger R.D., Dodson J.J. et al. Anadromy and the dispersal of an invasive fish species (Oncorhynchus mykiss) in Eastern Quebec, as revealed by otolith microchemistry // Ecol. Freshwater Fish. — 2010. — Vol. 19. — P. 348–360. DOI: 10.1111/j.1600-0633.2010.00417.x.

200. Thorrold S.R., Jones C.M., Campana S.E. Response of otolith microchemistry to environmental variations experienced by larval and juvenile Atlantic croaker (Micropogonias undulatus) // Limnol. Oceanogr. — 1997. — Vol. 42, Iss. 1. — P. 102–111. DOI: 10.4319/lo.1997.42.1.0102.

201. Thorrold S.R., Jones C.M., Campana S.E. et al.Trace element signatures in otoliths record natal river of juvenile American shad (Alosa sapidissima) // Limnol. Oceanogr. — 1998. — Vol. 43, № 8. — P. 1826–1835. DOI: 10.4319/lo.1998.43.8.1826.

202. Thorrold S.R., Shuttleworth S. In situ analysis of trace elements and isotope ratios in fish otoliths using laser ablation sector field inductively coupled plasma mass spectrometry // Can. J. Fish. Aquat. Sci. — 2000. — Vol. 57 (6). — P. 1232–1242. DOI: 10.1139/f00-054.

203. Thresher R.E., Proctor C.H., Gunn J.S., Harrowfield I.R. An evaluation of electron probe microanalysis of otoliths for stock delineation and identification of nursery areas in the southern temperate groundfish, Nemadactylus macropterus (Cheilodactylidae) // Fish. Bull. US. — 1994. — Vol. 92. — P. 817–840.

204. Tian H., Liu J., Cao L., Dou S. Interactive effects of strontium and barium water concentration on otolith incorporation in juvenile flounder Paralichthys olivaceus // PLoS ONE. — 2019. — Vol. 14(6). — e 0218446. DOI: 10.1371/journal.pone.0218446.

205. Tillett B.J., Meekan M.G., Parry D. et al. Decoding fingerprints: elemental composition of vertebrae correlates to age-related habitat use in two morphologically similar sharks // Mar. Ecol. Prog. Ser. — 2011. — Vol. 434. — P. 133–142. DOI: 10.3354/meps09222.

206. Tomida Y., Suzuki T., Yamada T. et al. Differences in oxygen and carbon stable isotope ratios between hatchery and wild pink salmon fry // Fish. Sci. — 2014. — Vol. 80 (2). — P. 273–280. DOI: 10.1007/s12562-014-0699-9.

207. Torz A., Nedzarek A. Variability in the concentrations of Ca, Mg, Sr, Na, and K in the opercula of perch (Perca fluviatilis L.) in relation to the salinity of waters of the Oder Estuary (Poland) // Oceanol. Hydrobiol. Studies. — 2013. — Vol. 42 (1). — P. 22–27. DOI: 10.2478/s13545-013-0061-3.

208. Tzadik O.E., Curtis J.S., Granneman J.E. et al. Chemical archives in fishes beyond otoliths: A review on the use of other body parts as chronological recorders of microchemical constituents for expanding interpretations of environmental, ecological, and life-history changes // Limnol. Oceanogr., Methods. — 2017. — Vol. 15, Iss. 3. — P. 238–263. DOI: 10.1002/lom3.10153.

209. Tzeng W.N., Severin K.P., Wickström H. Use of otolith microchemistry to investigate the environmental history of European eel Anguilla anguilla // Mar. Ecol. Prog. Ser. — 1997. — Vol. 149. — P. 73–81. DOI: 10.3354/meps149073.

210. Ugarte A., Unceta N., Pecheyran C. et al. Development of matrix-matching hydroxyapatite calibration standards for quantitative multi-element LA-ICP-MS analysis: Application to the dorsal spine of fish // J. Anal. At. Spectrom. — 2011. — Vol. 26, Iss. 7. — P. 1421–1427. DOI: 10.1039/c1ja10037h.

211. Uglem I., Kristiansen T.S., Mejdell C.M. et al. Evaluation of large-scale marking methods in farmed salmonids for tracing purposes: Impact on fish welfare // Rev. Aquacult. — 2020. — Vol. 12, Iss. 2. — P. 600–625. DOI: 10.1111/raq.12342.

212. Vasconcelos R.P., Reis-Santos P., Tanner S. et al. Evidence of estuarine nursery origin of five coastal fish species along the Portuguese coast through otolith elemental fingerprints // Estuarine, Coastal and Shelf Science. — 2008. — Vol. 79, Iss. 2. — P. 317–327. DOI: 10.1016/j.ecss.2008.04.006.

213. Vaughan J. The physiology of bone : monogr. — Oxford : University Press, 1970. — 346 p.

214. Volk E.C., Blakley A., Schroder S.L., Kuehner S.M. Otolith chemistry reflects migratory characteristics of Pacific salmonids: using otolith core chemistry to distinguish maternal associations with sea and freshwaters // Fish. Res. — 2000. — Vol. 46. — P. 251–266.

215. Walther B.D. The art of otolith chemistry: interpreting patterns by integrating perspectives // Mar. Freshwater Res. — 2019. — Vol. 70. — P. 1643–1658. DOI: 10.1071/MF18270.

216. Walther B.D., Thorrold S.R. Water, not food, contributes the majority of strontium and barium deposited in the otoliths of a marine fish // Mar. Ecol. Prog. Ser. — 2006. — Vol. 311. — P. 125–130. DOI: 10.3354/meps311125.

217. Wang X., Wang L., Lv S., Li T. Stock discrimination and connectivity assessment of yellowfin seabream (Acanthopagrus latus) in northern South China Sea using otolith elemental fingerprints // Saudi J. Biol. Sci. — 2018. — Vol. 25, Iss. 6. — P. 1163–1169. DOI: 10.1016/j.sjbs.2017.09.006.

218. Warburton M.L., Jarvis M.G., Closs G.P. Otolith microchemistry indicates regional phylopatry in the larval phase of an amphidromous fish (Gobimorphus hubbsi) // New Zeal. J. Mar. Freshwater Res. — 2018. — Vol. 52, Iss. 3. — P. 398–408. DOI: 10.1080/00288330.2017.1421237.

219. Warren-Myers F., Dempster T., Swearer S.E. Otolith mass marking techniques for aquaculture and restocking: benefits and limitations // Rev. Fish Biol. Fish. — 2018. — Vol. 28 (3). — P. 485–501. DOI: 10.1007/s11160-018-9515-4.

220. Watson N.M., Prichard C.G., Jonas J.L. et al. Otolithchemistry-based discrimination of wild- and hatchery-origin Steelhead across the Lake Michigan Basin // North Amer. J. Fish. Manag. — 2018. — Vol. 38. — P. 820–832. DOI: 10.1002/nafm.10178.

221. Wells B.K., Bath G.E., Thorrold S.R., Jones C.M. Incorporation of strontium, cadmium, and barium in juvenile spot (Leiostomus xanthurus) scales reflects water chemistry // Can. J. Fish. Aquat. Sci. — 2000. — Vol. 57 (10). — P. 2122–2129. DOI: 10.1139/cjfas-57-10-2122.

222. Wells B.K., Rieman B.E., Clayton J.L. et al. Relationships between water, otolith, and scale chemistries of westslope cutthroat trout from the Coeur d’Alene River, Idaho: the potential application of hard-part chemistry to describe movements in freshwater // Trans. Am. Fish. Soc. — 2003. — Vol. 132, Iss. 3. — P. 409–424. DOI: 10.1577/1548-8659(2003)1322.0.CO;2.

223. Wells R.J.D., Kinney M., Kohin S. et al. Natural tracers reveal population structure of albacore (Thunnus alalunga) in the eastern North Pacific // ICES J. Mar. Sci. — 2015. — Vol. 72, Iss. 7. — P. 2118–2127. DOI: 10.1093/icesjms/fsv051.

224. Whitney J.E., Gido K.B., Hedden S.C. et al. Identifying the source population of fish re-colonizing an arid-land stream following wildfire-induced extirpation using otolith microchemistry // Hydrobiologia. — 2017. — Vol. 797. — P. 29–45. DOI: 10.1007/s10750-017-3143-1.

225. Wolff B.A., Johnson B.M., Landress C.M. Classification of hatchery and wild fish using natural geochemical signatures in otoliths, fin rays, and scales of an endangered catostomid // Can. J. Fish. Aquat. Sci. — 2013. — Vol. 70, Iss. 12. — P. 1775–1784. DOI: 10.1139/cjfas-2013-0116.

226. Woodcock S.H., Grieshaber C.A., Walther B.D. Dietary transfer of enriched stable isotopes to mark otoliths, fin rays, and scales // Can. J. Fish. Aquat. Sci. — 2013. — Vol. 70, Iss. 1. — P. 1–4. DOI: 10.1139/cjfas-2012-0389.

227. Wright P.J., Regnier T., Gibb F.M. et al. Identifying stock structuring in the sandeel, Ammodytes marinus, from otolith microchemistry // Fish. Res. — 2018a. — Vol. 199. — P. 19–25. DOI: 10.1016/j.fishres.2017.11.015.

228. Wright P.J., Régnier T., Gibb F.M. et al. Assessing the role of ontogenetic movement in maintaining population structure in fish using otolith microchemistry // Ecol. Evol. — 2018b. — Vol. 8, Iss. 16. — P. 7907–7920. DOI: 10.1002/ece3.4186.

229. Yamada S.B., Mulligan T.J. Marking nonfeeding salmonid fry with dissolved strontium // Can. J. Fish. Aquat. Sci. — 1987. — Vol. 44 (8). — P. 1502–1506. DOI: 10.1139/f87-180.

230. Yamada Y., Okamura A., Tanaka S. et al. The roles of bone and muscle as phosphorus reservoirs during the sexual maturation of female Japanese eels, Anguilla japonica Temminck and Schlegel (Anguilliformes) // Fish Physiol. Biochem. — 2001. — Vol. 24. — P. 327–334. DOI: 10.1023/A:1015059524947.

231. Yang J., Jiang T., Liu H. Are there habitat salinity markers of the Sr:Ca ratio in the otolith of wild diadromous fishes? A literature survey // Ichthyol. Res. — 2011. — Vol. 58. — P. 291–294. DOI: 10.1007/s10228-011-0220-8.

232. Zimmerman C.E., Reeves G.H. Identification of steelhead and resident rainbow trout progeny in the Deschutes River, Oregon, revealed with otolith microchemistry // Trans. Am. Fish. Soc. — 2002. — Vol. 131. — P. 986–993. DOI: 10.1577/1548-8659(2002)1312.0.CO;2.

233. Zimmerman C.E., Swanson H.K., Volk E.C., Kent A.J.R. Species and life history affect the utility of otolith chemical composition for determining natal stream of origin for Pacific salmon // Trans. Am. Fish. Soc. — 2013. — Vol. 142 (5). — P. 1370–1380. DOI: 10.1080/00028487.2013.811102.

234. Zymonas N.D., McMahon T.E. Comparison of pelvic fin rays, scales and otoliths for estimating age and growth of bull trout, Salvelinus confluentus // Fish. Manag. Ecol. — 2009. — Vol. 16, Iss. 2. — P. 155–164. DOI: 10.1111/j.1365-2400.2008.00640.x


Для цитирования:


Михеев П.Б., Шеина Т.А. Применение анализа микроэлементного состава кальцинированных структур рыб для решения фундаментальных и прикладных научных задач: обзор. Известия ТИНРО. 2020;200(3):688-729. https://doi.org/10.26428/1606-9919-2020-200-688-729

For citation:


Mikheev P.B., Sheina T.A. Application of the analysis of trace elements composition for calcified structures of fish to solve fundamental and applied scientific tasks: a review. Izvestiya TINRO. 2020;200(3):688-729. (In Russ.) https://doi.org/10.26428/1606-9919-2020-200-688-729

Просмотров: 103


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1606-9919 (Print)
ISSN 2658-5510 (Online)